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A mathematical model Is used to evaluate chemical
process data and isolate assignable causes. Any
remaining non-assignable cause (process randomness) is
then treated by the classical Shewhart method. This
methodology enables design of process control strategy,
improvement of process consistency, and control of the
process at the “State of Statistical Process Control” by
demonstrating that the process is stable, predictable and
capable.

T
he objectives of this study were (1) to understand
and forecast process behavior, (2) to improve
control strategy, and (3) to demonstrate that the
process meets criteria for a process at the “State

of Statistical Process Control.” The criteria were stability,
predictability and capability.’ The method employed was
measurement of the sources of variation (assignable
causes) relative to process randomness, and forecasting
the value of process parameters based on historical data.

When the sources of variation are understood, the
capability of a process can be estimated and a control
strategy can be designed in order to meet cost (e.g., cost of
frequent process maintenance) and performance (e.g.,
Cpk = 1, 2, 3 . . .) requirements. To accomplish this, (a)
assignable causes must be separated from the process data
and (b) process randomness must be evaluated, using the
traditional Shewhart method.2

Data forecasting’ is important because it ensures that
corrective action, such as replenishment, is taken before
bath parameters exceed control limits. The forecasting
capabilities of the Shewhart and cumulative sum methods
are limited because they allow only a constant process
mean with random variation and do not take into account
process drift. The method presented here takes into
consideration all the assignable causes such as degradation
of the chemicals, drag-in or drag-out, consumption,
replenishment, evaporation and dilution. Variation is
allowed when assignable causes have been shown by
history or study to be indifferent to hardware quality. The
method is a novel but simple way to correct assignable
causes, to perform data forecasting, and to analyze process
randomness.

Background
Table 1 shows the equations used to correct assignable
causes and evaluate process randomness.

Data Forecasting—The forecasting system uses a set of
historical data, M,., (Last Measured Values), in a discrete
time series, and the assignable causes to estimate a future
value, F, (Latest Forecast Value). The estimate is modified
with each new Mt (Latest Measured Value). Equation (1)
expresses this concept. The constant, K1, is a dilution
factor, if dilution is necessary during process adjustment.
The term K2 is the drift factor fora given process; it includes
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process consumption evaporation, drag-in or drag-out,
chemical degradation, etc. It is determined by the slope of
the process drift with respect to time, using historical data.
The term t is the time factor expressed in days. The last
term, A, of Equation (1) is the change in concentration from
the amount of a chemical added during process
adjustment.

Equations Used for Data Evaluation

Latest Delta Value, D t—Assuming that M, and F, are
accurate, the difference between them will be zero. In
reality, each of the values has its own uncertainties.
Equation (2) combines the uncertainties into a single term,
Dt. If all the assignable causes have been corrected, D,
should be randomly distributed.

concept arose from the Mean Absolute Deviation (MAD)

value. It represents the recent randomness of the process.

with past history.

Warning Signal (S)—Equation (4) calculates the ratio of

between F, and M, is statistically significant:
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always less than ±3, then it can be said that the process is
stable and predictable.

Upper and Lower Specified Limits (USL and LSL) vs. Upper
and Lower Control Limits (UCL and LCL)—Historically the
specified limits are the values specified in a contract or
established in a standard. The control limits apply to the
distribution of the mean, which represents the natural
behavior of a process. In order to show that a process is
capable of meeting the specified limits, the process spread
(6 x oavg) must be less than the tolerance (USL-LSL).6

Assuming that a process decays continuously because of
various assignable causes, the question then becomes:
what latitude is allowable in the most practical and cost
effective process? Expressed another way, what capability
index (Cpk) is desirable? Cpk is defined as the smaller of
either X - LSL/(3 x oavg) or USL - X/(3x oavg), where X is the
process mean and oavg is the average standard deviation.

Results and Discussion
A chemical seal process with more than three years of data
was chosen as the object of this study. Table 2 shows the
chemical parameters of the process being controlled.

Significant Figures—The first concern is the accuracy and
precision of the analysis. The data must retain all the
significant figures supported by the analytical method, the
last digit of each figure representing the inaccuracy of the
method. Figure 1 (a) shows a control chart in which process
data were rounded to two significant figures. The trace of
the graph resembles a staircase, with no apparent trend.
Figure 1 (b) shows a control with the same set of data
retaining all the available resolution. The data appear
continuous and the process trend is apparent. If Equations
1-4 are used to treat the data of Fig. 1 (a), an inaccurate
warning signal will be generated. This is because of
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improper rounding, e.g., the number between 1.84 and 1.75

small change in the process, or a random analytical
inaccuracy, becomes Statistical y significant if, for example,
1.74 and 1.75 oz/gal are rounded to 1.7 and 1.8 respectively.
A large and erratic warning signal will result. ‘ “

Fig. 1—Control charts of alodine solution. (a) Data rounded to two
significant figures. (b) Data at four significant figures.

Assignable Causes—Figure 2 shows the control chart of a
neutralizing solution that goes through a cycle of
continuous decay and replenishment. The Latest Measured
Value, Mt, is shown with the Latest Forecast Value, Ft,
superimposed. It is apparent that the two sets of values
agree quite well. Also shown in this figure is the Latest Delta
chart (see Equation (2), Table 1). Its trace shows no
apparent trend and is randomly distributed, evidence that
all assignable causes have been corrected and that only
process randomness remains. F, is now being used to
forecast the near future of the process and implement
preventive maintenance to keep the processes within the
defined control limits.

Stability—The geometrically smoothed standard deviation,
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Fig. 2—Neutralizing solution. (a) Control chart with Latest Measured Value,
(b) Latest Forecast Value, (c) Delta chart.

Predictability—Figure 4 shows a plot of Warning Signal S
(calculated by Equation 4) vs. sample number for the
neutralizing solution. Five values, predating this study,
were observed to exceed ±3. Assignable causes were not
identifiable; however, the more recent history indicates that
this process is predictable.

Capability—The objective was to control the process within
a Cpk of 2. The capability ratio, CP, is evaluated first. Column
3 of Table 2 shows the last two years’ average standard
deviation of the process solution randomness, oavg and
Column 4 shows the corresponding C,. Three solutions:
aluminum deoxidizer, hot acid etch, and sealer II have CP

less than 2, therefore need improvements in terms of
control technique (e.g., better level controller, sampling
and analytical technique). As for the remaining solutions, it
is thought that the process can be controlled to meet Cpk

immediately by controlling the assignable causes. The
approach taken was to calculate and maintain the new
upper and Iower control limits. Figures 5 and 6 give before-
and-after examples of the new methods for controlling
these solutions to meet the desired Cpk.

Automatic Data Reviewing System—In our company it is
necessary to control over 100 process solutions consis-
tently. The method just described would be cumbersome if
applied manually. Computer procedures have been written
to handle the routine calculations. Figure 7 shows the block
diagram of the procedure. The input data are laboratory
analytical results and assignable causes. The output data
are the Latest Forecast Value, Ft, the Latest Measured
Value, Mt, and the Warning Signal, S.

The calculated results are evaluated according to the
logic diagram of Fig. 8. Four different warning signals,
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Table 3
Statistical Rules for Posting Warning Signals

Warning
signal

1

2

3
4

based on statistical rules and possibility of error, are posted
to laboratories and engineers to call for review or corrective
action. The statistical rules are given in Table 3. Additional
rules may be added when more experience is gained in use
of this system, or when less variation is desired. This
automatic data reviewing system has improved the integrity
of the process control data and decreased the response
time for corrective action.

Conclusion
In the application of a data forecasting procedure to control
chemical process solutions, simple mathematical equations
have been developed to evaluate process data. The essence
of these equations is quantitative consideration of
assignable causes. By comparing the difference between
forecast and measured values, it becomes possible to
assess the randomness of the process solution. The
randomness is then treated by the classical Shewhart
method. In this manner the behavior of the process
randomness can be characterized.

In several instances, small but abnormal changes in the
process data were observed. They were the result of
equipment malfunction, or sampling or analytical error.
The sources of assignable variation and process
randomness are now understood, permitting determination
of optimum process control strategy. Finally, using the data
forecasting equation, effective preventive maintenance of
process solutions can be implemented.
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