Electroless Nickel On Copper Alloys

Q We need to deposit electroless nickel onto copper-based alloys. What cycles should we use?

A Electroless nickel is also called autocatalytic nickel. The nickel is deposited by a chemical reaction that is catalyzed by the characteristics of the surface of the part being plated, if the surface is catalytic. Common metals that are catalytic to electroless nickel include most of the iron alloys, nickel and aluminum. Metals that are not catalytic to electroless nickel require special surface preparation to allow deposition. Metal surfaces that are not catalytic include lead, copper alloys, and other nonferrous materials. Because copper is not catalytic to electroless nickel, the surface must first be covered with a material that is catalytic to the plating solution, or that will cause the surface to become catalytic. This is typically accomplished by placing a cathodic charge on the copper part in the electroless nickel bath, and using a stainless steel or nickel anode to place a thin catalytic coating on the surface. Making the part cathodic causes the electroless nickel to plate on the surface. Because the nickel-coated part becomes catalytic, the chemical reduction of nickel from the electroless nickel solution (plating) will continue to occur, and greater thicknesses will be attained.

Another methodology that could be used is the sensitization of the copper part’s surface with a material that will cause the initial reduction of the nickel at the surface. Palladium chloride in a solution of hydrochloric acid will sensitize the surface of copper parts. This initial reduction of nickel onto the surface will allow further deposition by the autocatalytic electroless nickel process. Palladium is widely used for electroless nickel plating in the manufacture of printed circuit boards. In this case, it is necessary to have deposition occur only on the areas coated with copper, and not on the plastic associated with the boards. With printed circuit boards, the copper is infinitely more sensitive to activation by palladium than the plastic, allowing plating to occur in just the intended areas.

Electroless Nickel Plate-out On Electric Heaters

Q We are having problems with heating of the plating solution in our electroless nickel process system. The nickel metal occasionally plates out onto our stainless steel electric heaters. How can we prevent this?

A Electroless nickel is an autocatalytic plating process, and will plate on any sensitized surface. Electric heaters present a problem, because the activity of the solution increases as the temperature of the plating solution rises. The cause of the plate-out maybe localized heating of the solution near the heaters, up to a point where activity is extremely high, causing plate-out to occur onto surfaces not typically active to electroless nickel.

A good prevention is to use fluid flow or airflow techniques to minimize the localized overheating. In other words, the plating solution should never be allowed to remain stagnant in the presence of heater surfaces. Fluid-flow techniques use directed flow systems, or a sparger placed under the heater elements, to move the solution rapidly past the heaters. Airflow uses air agitation to move the solution, but it is less intense than fluid-flow techniques. If employed properly, however, with attention to the disposition of airflow patterns and air line placement, airflow can be very effective for moving the solution.

Passivation of Heaters

To prevent plating onto the heater surface, make certain that the heater surface is properly passivated so that plating does not occur. Passivation of stainless steel must be accomplished with 50 percent nitric acid for at least one hour to achieve proper passivation. Most operators fail to keep the concentration of nitric stripping solution at or above the all-important 50 percent level. They may start at 50 percent, but after the solution is used several times, the concentration will drop, so passivation will not occur properly.

Information has appeared in recent literature concerning the use of anodic protection to prevent plating on stainless steel surfaces by imparting a 10W, constant DC anodic charge to the surface. This has shown great promise and will be used more as the technique is developed.

Zinc Over Zinc Diecast

Q We plate zinc over zinc diecast parts. When parts are stored for six months or more, they tend to change color to an irregular deep blue. What causes this, and how can we correct it?

A This has been encountered before, and can be directly related to a diffusion problem. The zinc deposit will diffuse into the diecast component, causing color change. The diffusion is slow and the problem is insidious, because it may occur long after the part is processed and delivered. Because of that, many poor quality parts may be produced, but the magnitude of the problem may never be known.

Unfortunately, the only real solution to the problem is to use a barrier layer on the parts prior to zinc plating. The barrier is usually a cyanide-based copper strike. Advocating a cyanide solution is not usually part of this column, but in this case, it is the only reliable, consistent process to provide the proper diffusion barrier.

To assure that the problem is eliminated, and the diffusion is halted, a significant coating thickness must be applied. A copper coating thickness minimum of 0.00025 in. is recommended. This could be a complication to what may have appeared at first to be a very simple process of plating zinc on a zinc-based substrate.

Continued on page 65
Pollution Prevention:
Membrane Recovery Systems
Membranes may be used to conserve systems in several
different formats: Microfiltration, ultrafiltration and
reverse osmosis. Each has its place, its benefits and
limitations.

Reverse Osmosis
Reverse osmosis (RO) is a pressure-driven membrane
separation technique. RO uses a semi-permeable mem-
brane that permits the passage of water and doesn’t allow
other components to pass through the membrane. The
system allows for the concentration of dilute solutions,
which may be concentrated for return to the process
system or made easier to have hauled away to a treatment
facility. Some of the limitations of RO are based on the
efficiency of the membrane to completely reject some non-
ionized organic materials, and its ability to withstand pH
extremes. When the membrane is damaged, its excursions of
the process system go either extremely alkaline or
acidic. RO membranes may also be fouled or irretrievably
damaged by some materials, such as iron and manganese.

Another area in which RO has found a role is in
the production of high purity water. Ion exchange systems
have found great use in creating high purity water, but they
tend to be service-intensive and complex to operate. The
use of RO as a source of purified water may be enough for
most process systems, but the use of RO prior to a good
mixed-bed ion exchange system will allow the resin to last
longer and put more time and flow through the resin before
regeneration of the resin.

Reverse osmosis has been used extensively to close the
loop on nickel plating systems, and has shown to be
effective in complete solution recovery. RO has been
effective in recovering all the components in a nickel
system, from the metal ions to the physically large organic
molecules that are associated with the additive packages.

Next month, we’ll discuss micro- and ultrafiltration.

SFMRB is Asking Again!

In early February, your firm received a copy of the new and
simplified SFMRB questionnaire. We all need to help fill in the
information requested—not just for the good of the industry,
but for our own good. All data submitted to the CPA is
confidential. Anyone who fills in the questionnaire will receive
back a report with that data summarized. This data also
provides the information needed for the 2nd Annual Report to be
presented during SUR/FIN® ‘95-Baltimore. We hope you
will attend.

These statistics are very important to represent our industry
before regulatory agencies and congressional staffs, as well
as for you to use locally. The first SFMRB report opened a lot
of eyes about how large the metal finishing industry is in North
America. We expect the second to verify and expand on that
information.

Thank you. Your help and support are really appreciated.

65