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FOREWORD

This report describes work performed under Contract AF
33(615)-1084, Project No. 8173, Task No. 817302-9 during the
period 15 September 1963 through 30 October 1964, The contract

™~ -t

concerns development of high-temperature thermoel} -ctric generators é
and was under sponsorship of the Flight Vehicle .ower Branch, p
AF Aero Propulsion laboratory, Research and Technology Division, v
Wright-Patterson Alr Force Base, Ohio, For the Air Force, Mr. N
Charles Glassburn served as project engineer until May 1964 and 7
was then succeeded by Captain R. B. Morrow, Jr. ¢
Work on the contract has been conducted at the Dayton E
Laboratory of Monsanto Research Corporation, with C. M. S
Henderson as project leader. Working with him were R. G. Ault, o
E. R. Beaver, D. H. Harris, W. H. Hedley, H. B. Jankowsky,
E. J. Janowlecki and L. J. Reitsma. Techrical assistance was
provided by R. R. Hawley, R. Hedges, D. Reinhardt, V. Ruzic, a
D. Sevy, D. Sheppard and D. Zanders. £
This is the final technical report, unclassified, concluding i
the work on contract AF 33(615)-1084, P
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ABSTRACT

o s rme {3 e e

Nominal 50-watt{e) and 1f-watt{e) laboratory model generators
were designed, fabricated and subjected to sustained and thermal
cycling tests at a hot-junction temperature of ~1200°C, and cold
junctions of ~570°C in a vacuum of 197D - 107° torr. Both
generators, constructed of solid-state, bonded, segmented, p-
and n-type thermoelements showed good resistance to degradation
under these conditions. The 50-watt(e) generator completed
~1200 hours of operation without degradation of its power output.
The output of the 15-watt(e) model, after 2100 hours without
degradation, decreased by 9% during an additicnal 1400 hours of
sustained testing and a further 261 hours of thermal cycling
tests. Degradation of the 15-watt(e) mordel appears to have re-
sulted largely from deterioration of the electrical resistance
of the ceramic insulation used vo reduce its thermal shunt losses.

Improvements in the properties of thermoelectric materials
and interface bonding techniques for thermoelements were achieved
to yield p-n couples with 17% higher performance, relstive to
1962-63 couples. Various techniques were investigated for
screening p- and n-type thermoelements to 1200°C in a vacuum.
Fundamental investigations of the thermcelectric materials and
studies of hot-pressing and arc-plasma fabrication techniques
indicated that significant further improvements in the performance
of high-temperature thermoelements can be achieved.

Nuclear reactor, radioisotope, and solar-heated, high-
temperature, thermoelectric, space-powered system concepts were
proposed and preliminarily investigated. These studies showed
that high-temperature {120G°C) thermoelectric space-type power
units, ranging in size from a few watts to several hundred KW
output, can be desigred for performances from 335 lbs./KW(e) for
a solar-concentrating type system to 15 1bs./KW(e) for 350 KW(e)
or larger space power systems utilizing fast-reactor heat sources.
High-temperature, radicisotope-heated, thermoelectric space-type
units, of optimized design concepts and fabricated with state-of-
the-art segmented p- and n-type thermoelements, are capable of
7-9.5 watt(e)/1b. (100-140 1b./KW(e)) performance, including the
weight of the encapsulated isotope heat source.

Publication of this technical documentary report does not
constitute Air Force approval of the report's findings or
conclusions. It is published onliy for the exchange and
stimulation of ideas.
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I. INTRODUCTION

A. BACKGROUND

This ic thc final report on "High-Temperature Thermoelectric
Research, " presented under contract AF 33(615)-1084, covering work
zccomplished from 15 Septemter 1963 through 30 October 1964. The
overall program objective was to conduct applied research to
zstabllish the technical feasibility of utilizing high-temperature
~ihiermoelectric generators, powered with nuclear or solar heat
cources, as long-lived power units for aerospace vehicles. This
z{fort was the third phase of a program initiated in 1961 under
zontract AF 33(657)-7387.

The power output of electric power generators depends on the

flciency of the energy conversion device employed and on the
viantlty of thermal energy which can be drawn through the unit.

> electrical power requirements 1lncrease for a gilven system, an
nzrease in the thermal energy transferred through the conversion
..1t becomes necessary. Although generators employed in space
vzhlecles can be convenlently heated by nuclear or solar heat, ther-
~zl radiation 1s the princlpal means of rejecting heat to accom-
n.1ch thermal energy transfer through the device. The quantity of
tnermal energy rejected by radiaticn varies with the fourth power
of the temperature of the radlating surface; consequently, increasing
tn1c temperature becomes extremely important. It 1s clear that
~lzh temperature 1s the key to improved performance /watts (e)/1b.
cr watts(e)/ft.27 of most types of space power systems, 1including
ZUAP (Systems Nucleav Auxiliary Power) units. Until recently, 1t
zppeared that the high-temperature (1200°C) capabilities of the
“nermoelectric materlals, investlgated under this contract, exceeded
e capabllities of the avallable heat source.

Recently, a nuclear fast reactor capable of core temperatures
£ 1200°C wifh reflector temperatures to 1200°C was displayed by
-~e Pussians(l), who were apparently not in a position to utilize
211y the high-temperature capablilities of thelr reactor, since
~nhey employed slillcon-germanium thermoelectric materlials capable
of only 900°C. Additionally, encapsulated 1sotope heat sources
rapatle of providing hot-Jjunctlion temperatures in excess of 1200°C
are technically feasible.

During the first phase (1961-62) of the program, a lahoratory-
zpe, hlgh-temperature generator was bullt and preliminarily tested.

“anuseript released by authors 20 October 1964 for publication as
2 RTD Technical Report.



The unit contained 1/2-inch diameter thermoelements of MCC 50,

a p-type material originated by Monsanto Company and designed for
use at 1200°C. The thermoelectric properties of MCC 50 remained
relatively constant during a 100-hr. test at a hot-junction tem-
perature of 1200°C, and the unit satisfactorily tolerated more than
100 thermal cycles between 200°C and 1200°C. Sublimation losses
for MCC 50 at 1200°C in a vacuum of 10-2 torr were less than 1%
in a 1000-hr. test period. It was indicated by Monsanto Research
Corporation's thermoelement-modile concepts used in the laboratory
2 model generator, together with the low specific weight of MCC 50,
3 that space-type generators capable of appreciably exceeding 2-3

’ watt(e)/1b. power output could be fabricated.

During che second phase {1962-63) of the program, the nominal
5—watt(e) laboratory model generator gurvived a 2556-hr. sustained
performence test in a vacuum of ~10-° torr, at a hot-junction
temperature of ~1200°C ané a cold-junction radiator temperature
of ~720°C with no degradation in thermoelectric properties.
Specific performanc~ of this device, employing only p-type MCC 50
thermoelements, wa' 2.75 watt(e)/ib. /364 1b./KW(ez7.

Monsanto Company made available to i.onsanto Research Corpora-
tion other original p- and n-type thermoelectric materials in
order to further increase the perfcrmance of space-type generators.
These materials, kxnown to exhibit low sublimation losses in vacuum,
were characterized by property measurements at elevated temperatures.
At the end of the second phase of the program, these thermoelectric
materials were utilized, as shown below, in preparing segmentesd
thermoelements for use in a nominal 50-watt(e) advanced lzboratory
model generator.

Polarity of Hot-End Segment Cold-End Segmerit

Segmented Useful Temp. Useful Temp.

Thermoelement Material Range Material Range
p-type MCC 50 850-1200°C+ MCC 40p  400-950°C
n-type MCC 60 850-1200°C+ MCC 40n  400-950°C

Design and fabrication of the nominal 50-watt generator were
completed near the end of the second phase of the program. Solid-
state, bonded, high-temperature, multi-segmented thermoelements
(3/8-1inch diameter) used fo:» the first time in the fabrication of
a generator, obviated the need for springs or other mechanical
devices to maintaln low-resistance contacts between thermoelectric
segments and electrical and thermal leads. Lightwelght central
core construction, with radiators directly bonded to the segmented
thermoelements, and high-temperature capabillity resulted in a

N ]

S



kA R R Ra!

power output of 12.8 watt(e)/1b. /78 1b./KW(e)/, exclusive of

heat source weight, with a hot junctlon temperature of 1200 °c aga

a cold-junction temperature of 570°C in a vacuum of 105 to 10-

torr, After 266 hrs., of sustained operation, generator perfor-
mance became arratic, and inspection of the unit revealed that the
safe operating temperatures at the intermediate junctions (Tji sites)
of the n-type thermoelements had been exceeded by about 100°C,
causing generator failure.

During the third and cuirent phase of the program, the damaged
50-watt(e) zenerator was to be repaired and further ecvaluated.
Additionally, an improved leboratory model generator of nominal
15-watt(e) output was to be designed, fabricated and tested. A
test faciliity, similar to that used for evaluating the advanced
laboratory model generator, was tc be designed, fabricated, tested
and delivered to the Air Force for evaluation of generators and
components under simulated space conditions. Research was to
continue on junction forming by hot-pressing, production of thermo-
elements bv arc-plasma spraying, and fundamental studies directed
toward corre.zting microstructure characteristics with thermo-
electric properties of thermoelements. Finally, a prelimirary
investigation was to be made of advanced systems concepts in-

volving the use of radicisotope solar and nuclear heat sources

in auxiliary power systems for space.

)
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IX. SUMMARY

A. RESULTS

This multiphase project was concerned with the design,
building and testing of two laboratory type generators, applied
research aimed at evaluating and improving high-temperature gen-
erator compenents, and a preliminary investigation of the per-
formance of several system concepts using nuclear reactor, radio-
isotope and solar-type heat sources. The results of each phase

are summarized below.

1. Advanced La%voratory Model Evaluation

The nominal 50-watt generator failed after 270 hours of
operation at a hot-junction temperature of 12¢0°C and a cold-
junction temperature of 570°C and 10-5 to 10-C torr. Cause of
failure was traced to opsration of its n-type, 3/8 inch diameter,
segmented thermoelemer..s at ~100°C above their design interface
(Ty) temperature of 850°C. The generator was completely dis-
assembled following its failure, then rebuilt with new n-type
thermoelements. Also, about 10% of the p-type thermocelements were
replaced. The repaired generator then completed 1099 hours of
sustained testing with its hot junction at~1200°C, its cold
junction at~570°C and at 10-5 - 10~ torr. It then was subjected
to 105 thermal cycles (~100-hre. further testing), without de-
gradation of its power output. Performance of the generator
during the sustained and thermal cycling tests ranged from 10.4 to
10.9 watt(e)/1b., with a short iime peak of 11.8 watt(e)/1b., while
its thermal efficiency ranged from 1.5% to 1.8%. Chief problems
encountered were maintenance of the temperature monitoring thermo-
couples and the resistance heat source.

2. Improved Experimental Model Evaluation

Based on knowledge gained in building and testing the 50-watt(e)

generator and in developing 1/l-inch diameter segmented thermo-
elements, a nominal 13-15 watt{e) generator weighing 1.3 1lbs., ex-
clusive of heat source, was designed, f{abricated, and testea for
3508 hours (146 days) with its hot junction at ~1200°C, cold
junction at 575°C and in a vacuum of 10-5 - 10-0 torr. Following
the sustazined performance test, this generator was subjected te
264 thermal cycles, under simulated space conditions in which peak
heating and cooling rates to 250°C/min. were rcached. The power
output of this generator, under matched lcad conditions, ranged

from 12.4 to 17.3 watt(e), corresponding to 9.5 to 13.2 watt(e)/1b.
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and thermal efficiencies of 2.C% and 2.8%,: .pectively. No de-
radation in power output was observed during the Tirst 2160 hours
%90 days) operation. Performance during this period climbed from
10.6 to 15.2 watt(e)/1b. Beyond this time, power output 4dropped
slowly by €% from 2160 hours to 3508 hours, and by an acdditional
3% during the 264 hours reguired for thermal cycling tosts, Post-
test examinations showed that the electrical resistance of the
ceramic portion of the thermal insulation, used to minimiz

thermal shunt losses, had depreciated below its origina: value by
a factor of ~100. A single broken n-type thermoelement was also
found. Chief cause of degradation of this generator, therefore,
appeared to be falilure of its ceram’c insulation, with no apparen®
damage having occurred to the segmented thermcelements. As with
the 50-watt (e) generator, considerable difficulties were encountered
in keeping temperature-monitoring thermocouples and the eliectrical
resistance heater operating.

3. Test Facility

A versatile facility T
couples, and thermoelectric
and evaluated for the Air Fo

cr evaluating thermoelements, p-n
generatoes was designed, fabricated,
re

e.

4, Component Research

a. Junction-Forming Techniques More than 600 3/8-inch
and 1/4-inch diameter, segmented thermoelements were fabricated and
evaluated under this phase of the contract for the purpose of
evaluating junction-forming techniques, in repairing the 50-watt{e)
generator and in bu lding the experimental model., Considerable
difficulties were erncountered, particularly in producing 1/4-inch
diameter, p- and n-types, segmented thermoelements needed for the
experimental model. Daily yielids of usable thermoelements fre-
quently ran as low as 10%. Nevertheless, the mechanical strength
and electrical conductivity of interface junctions between thermo-
electric material segments were improved by 15-20% during the
past 12 months. Electrical resistance measurements of segmented
thermoeliements were also n.ade, and the base of knowiedge concerned
with solving junction-forming protlems was extended.

b, Arc-Plasma and F.ame-Spraying Studies Although efforts
on this pnrase of the project were limited, due to extensive f{lame-
spraying operstions required for repair of the 50-watt(e) and
experimental!l model generztors, the folliowing progress was made:
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- Powder particle size and shape characteristics needed
for uniform feeding of thermoelectric and Junctilon-
bondlng powdered materials to arc-plasma and (lame-
spraying equlpment were developed.

- It was determined that pre-reaction and conditioning
of thermoelectric material components, prilor to arc-
plasma spray fabrication and post-spray treatment,
gave better thermoelectric materials, :

- It was learned that thermoelectric composltions,
optimum for hot-pressing, must be modifled for use
in the arc-plasma spray fabrication of thermoelements.

- Segmented p- and n-type thermoelements were made and
tested to ~1000-hrs.

- Promislng solid-state microstructures capable of useful,
oriented, and improved (relative to the properties of
hot-pressed materials) thermoelectric properties were
made .,

- The posslbility of substantlally lowering the cost of
producing high quality, single and multlple segment
thermoelements, and 1n producing them 1ln a wide varlety
of geometries, remains technically feaslble and 1s
economically quite attractive.

¢. Screenlng and Sustalned Performance Testing of Materials

This phase was largely concerned with the difflcult problems of
making useful measurements of thermoelectric properties at tem-

peratures to 1200°C in a vacuum. Conslderable effort was devoted
- to developing a method for measuring T, Junctlon temperatures
in fraglle 1/4-inch diameter, double-segmented thermoelements re-
quired for the experimental model generator. More than 800 seg-
mented thermoelements of 3/8-inch and 1/4-inch diameter were
screened or performance-tested, as requlred for studles under the
Fundamental Investigation, Junction Forming, and Generator Fab-
ricatlon phases of the project,

A series of tests were performed to assist in determining the
causes of failure at the MCC 40-graphite intermediate Junction of
p- as well as n-type thermoelements., These tests contributed to
the dlagnosis and solutlon of causes of the fallure of the 50-watt(e)
generator, Modificatlons were also made to the screening appartus
in an effort to improve 1its accuracy and utility at 1200°C.

A hot-pressed p-n couple, representative of the best p-n
compositions made during 1963, was produced and tested at a Th of

6



~1200°C, cold Junctlon of 550°C and at 10-5 - 10-6 torr for
1012-hrs., without degradation ol its output. The power output
of the 1963-64 couple was found to be 17% higher than that for
representative 1962-63 couples operating under nearly ldentical
thermal conditions,

d. PFundamental Investigatlons A survey of possible
mechanisms and microstructure examination techniques .was made 1n an
effort to explain the performance of Monsanto Research Corporation's
high-temperature thermoelectric materials. This study, when
correlated with measured properties of thermoelements, indicated
that Monsanto Company's high-temperature thermoelectric materials
apprecach is technically sound and that substantial lmprovement of
thermoelectric properties is pcssible.

5, Preliminary Investigation of System Concepts

a. Nuclear Qut-of-Pile and In-Plle Thermoelectric Space
Power Systems Conceptual designs were proposed and
investigated in a preliminary way for three types of fast reactor-
heated high-temperature thermoelectrlc space power systems.
Comparisons of their optimized performances with those of several
SNAP systems are presented below:

System Concepts

"HORSE
Power (out-of- TIGER SWIFT

System Level, SNAP* pile, with (in-pile (in-pile,

Performance KwW(e) (2,8) loop) no 1oop5 with loop)
1965 1971-85 1965 1971-85 1965 1971-85

1bs./KwW(e) 3 400 150 120 350 130 160 110
££3/KW(e) - 14 14 21 19 lg 15
$1000/KW(e) 16 89 86 680 68 11 100
1bs./KW(e) 30 >100 59 33 290 30 S T
£t3/KW(e) 4.7 3.5 2.2 4.3 2.9 1.9 1.6
$i000/KW(e) 2.6 17 14 830 22 92 39
1bs./Kw(e) 350 - 55 26 - - 43 | 15
rt3/KW(e) - 3.2 2.2 - - 0.22 0.24
$1000/KW(e) - 4.8 3.4 - - 75 20

*The data for the SNAP systems do not lnclude shield
welght, The performance of the systems investigated
on the project -includesall components and shielding
for an instrument payload.

7
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These performance data were obtained using properties of
MCC thermoelectric materials anticipated by 1964-1965 and by 1971-
1985. Such performances, however, can only be attained with seg-
mented thermoelements that are smaller than presently practical
to produce. The performance of each of the three system concepts
studied 1s quite sensitive to thermoelectric material parameters.

The performance of the HORSE and SWIFT systems could be
further improved with 1964-1965 thermoelectric properties, and by
the use of hybrid thermoelectric-dynamic (Rankine cycle with
turbines) systems. Further ilmprovements in thermoelectric and
structural materials, anticipated during 1971-1985 could improve
performance of SWIFT concept (without dynamic auxiliary power
units) to approximately 15 lbs./KW(e).

b. Radiolisotope Space Power Systems A performance and
thermal é??lciﬁncy study (based on ¥§53-I965 MRC materials) for a
25-watt(e) Cm242 heated (Th of 1200°C) thermoelectric space power
generator, utilizing 3/8-inch diameter segmented thermoelements,
showed a maximum performance of 9.0 watt(e)/lb. /110 1b/KwW(e)7 at
an element length of 1.7 ecm (0.67 inch) and cold-junction tem-
perature of 550°C. The thermal efficiency at optimum performance
is 2.84. The maximum thermal efficilency at a Tp of 1200.°C is
3.75% at an element length of 2.7 e¢m (1.060 inch) and at a cold-
Junction temperature of 500°C. The design points for maximun
performance and for maximum thermal efficiency do not coincide.

The study also shows that generators can be designed with high -
performance of, for example, at least 7.0 watt(e%?lb. 43 lhﬁkw(e)/
within a wide range of cold-Junction temperatures and elcment
lengths. v

A comparison between the cylindrical ngEgical and sandwich
design generator concepts for a 25-watt(e5 Cr heated (Tnh of
1200°C) thermoelectric space power generator, with 3/8-inch
diameter, segmented thermoelements operating at 600°C cold-junction
temperature, showed the spherical concept to be superior in per-
formance at 9.5 watt(e)/1b./I05 1b/KwWle)/vs. 3.2 hatt(e)/lb.[&éa 1v/
KW&Q?Tor the cylindrical concept. These performances are reached
at an overall element length of 1.5 cm (0.59). The performances

of the sandwich concept reach a maximum of only 8.8 watt(e)/1b.
/263 1b./KW(e)7at an element length of 2.2 e¢m (0.88 inch).

A comparative study of 25-watt(e) thermoelectric space
power generators with géS-inch g&ﬂmet;n segmented thermoelements
heated with Po210, cm2%2 and Cm heat sources (Th of 1200°C)
and operating at 680°C cold-Junctlon temperature showed the gen-
erator with the Po2lO heat source to have superior performance
at 9.3 watt(e)/1b, /I08 1b/KWe)/ad 1.4 cm (0.55 inch) element
length. The performance for the Cm242 heated system 1s somewhat
lower at 8.8 watt(e)/1b. /T14 1b/KW(e)7 with the same element
length.

: 8



The performance of the “r~4” heated syctem 1is agaln lower at
3.3 watt{e)/ib. /263 1b./KWE)7at 1.5 em (0.55 inch) element
length. -
. e 3o
Preliminary investigations showed that a Pu--- heated §§n

rator «will have lower performance than one heated with Cm=44
¢hio dLsaanQ aze does not offset the many advantages of vhe utili-
zation of Pu 2327, with respect te availability and shielding. An
investization of Sr90 showed this isotope tTo bLe unsuited for space
powel applicazions. The low power density of this isotope and

S
the heavy shieslding regquirements result in ver poor perfocormance
values for space-iype systems.

—~

A prelimirary study based upon the 1971-17%; thermoeleciric
parameters showes thst at 1400°C hot-juaction temperature, 1050°C
interface temperature, and 550°C cold-juncticn 1¢ﬁperwture, 2
system's thermal efficiency of 3.0% can ve reascwed and g performance
of better than 30 1vs./KW(e) can be achieved wiin a Cm<*< oxide
heat source for a wide range of element lengtns ard cold-junction
temperatures. A 25~watt(e)P;Qe;ﬂoeleczric space power system,
using a gadoliinium-polonide~tv heat source, can have a performance
better than 40 ivs./%¥W{e), based upen 1271-13%5 materizl properiy
pradicticas.

c. Solar-Concentrating Thermoeleciric S.stems Based on
the properties of MCC tThermoelectric maierials anticlpated by
1964-1965, 1t was found that a high-temperature thermoele-iric
generator, operating in a near-earth o tit, &and heated ©y a cne-
plece, 9-ft. diameter, parabolic mirror would be capable of =50
watt(e) and 335 1bs./Kw{e) These pevio ance fizures take into
gecount the veignt Oa deployment and orientation hardwgre. The
specific volume of this module was estimated at Z40 ft2/W(e).
Batteries are more practical than thermal storage devices for
providing power during dark ortiting periods.

L
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B. CONCLUSIONS

The results of this program suppdrt the following conclu-
sions. _

1. Laboratory Model Generators

The successful completion, without degradation of perfor-
mance, of more than 1200 hogrs of sustained operation and thermal
cycling tests at 10-5 - 107° torr on a 50-watt(e) generator oper-
ating between 1200°C and 570°C indicates that segmented 3/8 -inch
diameter thermoelements of Monsanto Company thermoelectric mate-
rials are capable of = year's operation with less than 10% Jeg--
radation. This coriclusion was supported by the resuits of con-
current sustalned performance and thermal cycling tests of 3770-
ars. on a 13-15 watt(e) generator made from segmented 1/4-*nch
diameter thermoelements., No degradation was experienced with the
smaller generator to about 2100-hrs. operation. Degradation which
was encountered beyond 2100 hrs. and reached 6% at 3508 hrs. and
a total of 9% after an additional 26l-hrs. of thermal cycling,
was apparently the result of deterioration of the electrical re-
slstance of the ceramic thermal insulation used in this generator.
A broken n-type thermoelement, found during a post-test exam-
ination, demonstrated the value of redundancy in generator circuits,
but accounted for less than 10% of the degradation experienced,
The mechanlical and thermal stresses experilenced by both laboratory-
type generators during thermal cyclling tests showed that the baslic
multi-segment thermoelement, multl-thermoelement module, and tiler
concepts used in thelr fabrication are sound and useful for
future space power system deslgns,

2. '"est Facillitles

The versatille facillty completed for the Air Force 1s capable
of evzluating thermoelements and singlg, doub%e, and higher
multiples to 1200°C in a vacuum of 102 - 10-© torr. This facility
can also be used to evaluate multi-watt generators under simulated
gspace conditions and a varlety of thermal conditions,.

3. Component Research

Further effort will be required to lower the contact resis-
tance and lmprove the quality and reproduclbllity of the segmented
thermoelements. Significant improvements 1n both the quality and
reproducibility of MRC's high-temperature thermcelements are

10




fechnically feasible.

As demonstrated by the compietion of the 1000-hr sustained
performance and 250-cycle thermal shock tests, the potential for
the achievement of high reliability and perfosmance with arc-
plasma fabricated thermoelements remains high. This method of
fabricationr continues to offer good possibilities for the low-cost
mass production of thermoelectric space power units,

On the basis of knowledge gained under this program, it is

likely that signlificant (10-30%) improvements in the performance
of segmented tThermoelements can be atizined.

4, Preliminary Investigaztion of System Concepts

On the bpasis of present investigat
thermoeiectric space power systems, it

fote ;_:.

oris of rezctor-heated
s concluded that

a. The 1bs./KW(e) performances (:ncluding shielding
weights) of the HORSE (out-of-pile thermoelements
with heating loop), SWIFT (in-pile thermoelements
ccoled by out-of-pile loop), and TIGER (in-pile
thermoelements, no loop) concepts, based on 1964-
1965 thermoelectric material properties and a PuC
fast-reactor heat source, are higher than those for
SNAP 10A, SNAP 2 and SNAP 8.

b. The performance of each of the {hree space power
concepts studied is guite sensitive to the per-
formsnce of the thermoelectric components., Thus,
significant improvements in system perlormence
cou:=d resuit from im pvsvemcnts in performeace of

the thermoelectiric components.

e, Caiculations indicate thai system performances
below 30 ibs./KW(e) could be zttained for HORSE
systems using vesliuss of thermoelectiris parameters
assumed t0 be attainalble in the :9?1-1;85 time period.

d. SWIFT systems could apprecach a perfcormance of 15 1ibs./
KW{e) and poscibly surpass this figure if the high-
temperature thermoelectiric generator were combined
with 2 ow-temperature Rznkine cycle turbine systm.
AGZitionzl roncertuz: Cesign studies of such hybri
Stallc-dynzmic systerms shouid te madge.

e. The KCRSE znd SWIFT concerts with fluid hea? trangler
oops offer higher performances but Jower re’listl ity

2wy il
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than TIGER, which requires no fiuids and 1is of
simplifled design.

Fuel cost in $/KW(e) for large HORSE systems appears
competitive with that for the SNAP 8 system, while
cost for large SWIFT systems 1s between those for
SNAF 10A and SNAP 2,

The system volume in ft3/KW(e) 1s lower for both the
HORSE and SWIFT concepts than for SNAP 8.

Attainment of optimum performances in the 3 KW(e)-

350 KW(k) ranges for each of the three high-temperature
thermoelectric systems investligated will requilre
development of production processes for making smaller
segmented thermoelements than will be avallable by
1965. It is antlclpated that the small thermoelements
could be developed during 1965-1970.

Optimum performance of HORSE and SWIFT systems is
attained at low to moderate (250-650°C) radiator
temperatures. The SWIFT type of system could utilize
present state-of-the-art coolant systems (such as
mercury or water) for use at temperatures below 500°C.

Investigations of radioisotope heated space power systems,
based on the use of heavy-walled 1sotope containers, as required

for total 1sotope containment during reent:ry, or an aborted launch,

led to the following conclusions: :

A

High performance sz'l‘2 of Po210 heated thermoelectric
space power generators with 3/8-inch diameter elements
at a power level of 25 watt(e) can be bullt utilizing
a wide range of element lengths and operating over a
wide range of cold-junction temperatures. Performances
as high as 9.0 watt%e)/lb. /110 1bs./KWe)/are feasible.

cm2%2 or Po210 neated thermoelectiic space power gen-
crators, with 3/8-inch diameter thermoelements, can be
operated at thermal efficlencies as high as 3.75%.

Since the design points for maximum performance and
maximum thermal efficlency do not colincide, practical
generator designs wlll have to be a compromise between
the two performance parameters. A high performance
colncides with a low thermal efficlency, 1.e., with

a high 1sotope investment. A further study will have
to be made of the trade-offs between performance and
cost of the generator,.



On the basisofabrief, preliminary invecstigation o
concentrating type of space power system, based on
that a 9-f¢t.
module is of optimum

a.

(¢

While the sphericeal decsign was found to be superior

to the cylindrical design with respect to the per-
formance of a 25-watt(e) generator and for 3/8-inch
diameter thermoelements, is too smail

to warrant the additional effort needed to successfully

develop the inherently more complicatea sphericai

design.

At the 25-watt(e) power level the Po2lC ig the best
radioisotope heat source. While tentative computations
show the performance of a Pv?38 fueied generator %o

be lower than that of a Cm2%% fueled one, the advantages
of Pug3% are such that it must be considered to be the
superior fuel.

diameter parabolic mi
size, it is conclucecd that:

A specific performance of about 335 1bs./KvW(e) might
be expected for mirror-thermoeiectiric generator
modules of about 250-watt{e) cutput. This performance
is based on properties of MCC thermoelectric materiais,
the availability of which is anticipated during 1864-65,
Batteries are more practical than thermal sforzage
devices as a means of supplying power during dark
orbital periods.
Increasing the power level of this fype sysctem does
not appreciabzy improve ite performance.
Thermoelements smallier than those that wilil te zvailable
during 1003-1965 are needed to reach optimum system

&

Collector storage and high collector/thermoelectric
generator weight ratios zre major probiem areas
requiring attention for improved pericrmance of this
types system,

fo
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III. RESEARCH AND DEVELOPMENT

A. ADVANCED LABORATORY MODEIL EVALUATION

Duration tests on this nominal 50-watt(e) generator were
initiated during the last two weeks of the second (1962-63)
phase of the program and extended into this, the third phase
of thc program. The results of duration and thermal cycling
tests, as well as detalled post-test examinations made on this
generator, are presented in this report section.

1. 1000-Hr. Sustalned Performance'Test

This generator, shown in the assembly drawing of Figure 1
and described in Table 1, weighed 3.86 1b., exclusive of its
heat source. It utilized 46 series-connected stages of two
p-type and two n-type segmented thermoelements, each 3/8-inch
diameter by 0.65 inches long. These thermoelements were joined
at their hot ends by molybdenum-graphite contacts and at their
cold ends by finned copper radiators coated with TEC-1, a highly
en.ssive proprietary Monsanto Research Corporation coating. An
electrically powered, 0.5 inch 0.D. tantalum tube, with 0.020 inch
walls and equipped with so0lld tantalum ends that extended 1 inch
into the central cavity at each end of the generator, was used as
a heat source. An A.C. low-voltage high-current power supply,
controlled by means of a single thermocouple located at the hot
Junction of a p-n couple at the approximate center of the zenera-
tor, provided the thermal energy needed to maintain the tantalum
resistor at operating temperature.

As shown in Figure 2, the generator was mounted within a
water-cooled cylindrical protective shield which served as the
primary heat sink for the radliatively cooled generator and pro-
tected the pyrex glass vacuum jar from thermal damage. The
inside surface of the heat sink was coated with TEC-1.

Sustalned testing of the generator was starfed with opera-
tion at 1217°C (Tp) in a vacuum of 0.8-0.9 x 107° torr. Initial
observations indicated that the tiers of both ends of the generator
were below thelr designed opcruting temperatures of 1200°C (1,,
hot-junction temperature), 85C°C (Ti, intermedlate-junctlon tem-
perature between segments of high-and low-temperature thermo-
elertrlc materials), and 500°C (T, cold-junction temperature),

14
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Figure 2. Advanced Experimental Model Gener-
ator in Test Stand Showing Water-
Cocled ZProtective Shiesiding
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As shown in Table 2, the first 1Lli-hr. oreration of the gen-
erator yielded an output of 46 watt(e) /I1 9 watts(e,/1b./ at an
overall thermal efficiency of 1.8%. Heat losses at the ends we.e
severe, as was the temperature gradient (estimated at 100-200 °c)
between the central snd end sections of the generator. To reduce
these undesirable and harmful effects, a 0.5 inch 0.D. tantalum
he *ter, with a wall thickness of O. 015 inch and with shorter solid
ends than the first heater, was installed in the generator and 1t
was returned to operating conditions. An improvement in the unifor-
mity of the temperature gradient (estimated at 25-50°C) between
the central and end secftions of the generator was noted with the
new heater in place. AdditionaiTy, ower output increased to
about 50 watt(e) /I2.8 watt(e) / at an improved overall
thermal efficiency of 2%. This 1mprovement in pverformance during
the next 122-hr. operation of the generator is belleved to have
resulted from the more uniform temperatures and reduced heat losses
obtained with the second heater.

Generator power output became erratic after 266 hrs. of operation,

and further sustailned tests on the generator were halted. A close
inspection of the generator after it had cooled to room temperature
revealed that four n-type thermoelements located in 1its central sec-
tion had faileu at their MCC 60~MCC 40 junction. This inspection
failed to reveal more serious damage, so it was decided to electri-
cally bypass the damaged “hermoelements. Vacuum feedthrough faci-
lities for 12 new ithermocouples were also installed to permit moni-
toring of the Junction temperatures of selected thermoelements.
These efforts were, in effect, lost, when upon returning the repaired
generator to operating conditions, its power cutput was again
erratic and low.

2. Pallure Analysis

An analysis of the generator performance relating to causes
of failure and discontinuance of the sustalned testing was immed-
iately initiated. 1Initial examinations indicated that failvrre of
the n-type thermoelements was due to unexpected high T; temperatures
between the MCC 6C and MCC 40, n-type thermoelectric segments.
Previous screening of representztive segmented thermoelements had
indicated that Ty Jjunction temperatures for n-type thermoelements
would be in the é50-900°c range. In such screening tests Ty tem-
peratures were measured by thermocouples inserted in holes machined
radialiy from the surface to the center of selected thermoelements.
Machining of such thermocouple holes at the MCC 60-MCC 4C junctions
of thermoelements used in this generator was aveided in the interest
of retention of maximum thermoelement strength and generator relia-
bility.
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Better thermal insulating techniques used in the fabrication
of the advanced laboratory model generator, as compared with those
used for the sustalned testing of the p-n couple 2 ,significantly
reduced thermal leaks, but caused higher Ty temperatures 1in many
thermoelements. For example, on the basis of the patterns ovserved
during screening of thermoelements, for a Tp of 1200°C, a maximum
temperature of about 880°C with a T, of about 560°C should have
been reached for thermoelements in the final generator. Subsequent
actual measurements, made on several n-type thermoelements from the
central section of the damaged generator, showed that for a Tp of
1200°C a T4 of 1000°C was reached with T, at 560°C. Substantial
(50-100°C) temperature differences between the center and the out-
side surface of thermoelements at the intermediate Jjunctlion were
also observed in tests run on thermoelements from the damaged
generator.

Cold-junction temperatures were found to be reasonably uniform,
having an estimated variance of less than * 20°C over the entire
generator. Hot-Jjunction temperatures of 1200°C to 1300°C were
measured during the test run that was made on the generator after
its initial failure. Examination of the thermoelements after dis-
assembly of the generator showed that this rather wide range of
hot-junction temperatures was due to the following conditions:

1. Hot-junction thermocouples (inserted under difficult
conditions while the generator was still on the test
stand) placed in the assembled generator after it had
failed were found to be implanted slightly deeper
toward the heater than they should have been. Such
positlioning of the thermocouples would account for
readings between 1250°C and 1300°C (higher than the
true hot-junction temperatures).

2. The hot-Junction thermocouples implanted during
generator assembly, at the proper positions, recorded
true temperatures and exhiblited good uniformity except
where fallure of an adjacent thermoelement interrupted
the normal thermal paths. Such fallures resulted in an
approximate 30°C temperature rise at the hot Junction
of the remalining thermally conducting thermoelements.
The temperatures of normally functioning thermoelements
were of satlsfactory uniformity and were believed to
have varied less than % 20°C from operating temperature
over the entire generator.

Vibration of the generator during sustalned testing may also
have contributed to fallure of the n-type thermoelements. Such




vibration, resulting from oscillation of mechanical vacuum fore-
pumps and from the bullding, had been observed to cause the genera-
tor to continuously vibrate on its test stand at low frequency
(estimated at less than 100 cps) and 1/32-inch to 1/16-inch ampli-
tude, despite application of vibration damping procedures. However,
as evidenced by the , successful 1000-hr. sustalned performance test
on the p-n couple, ( where simliar vibration was present, it 1s
doubtful that such vibration in the absence of overheating of the
intermediate Jjunction would in itself have caused thermoelement
failure.

Partial disassembly of the advanced laboratory model generator,
as shown in Figure 3, disclosed an excellent condition of all
zomponents, except as noted in Figure 4, at the Jjunctions between
segments of the thermoelectric materlals. All graphlte structures
were 1In excellent condition except for hairline cracks 1n two
half-tiers at the hot-junction graphite ends. These cracks did
not interfere with generator performance. All inculation and
radiation shielding was in perfect condition. The TEC-1 emissive
coating was in all cases adherent, 1lntact, and functional in ap-
pearance. The flame-sprayed molybdenum Jjoints, electrically and
mechanically bonding the thermoelements to the graphlite rings at
the hot-end, and the ~opper radiators at the cold-end were examined
minutely and found to be in perfect condition. The thermoelectric
segments were found to be unaffected in appearance, as were both
hot and cold Jjunctions of all thermoelements.

It was concluded that the generator fallure was largely the
result of unknowingly operating the intermediate Jjunctlions of
thermoelements located in the central sectlon of the generator
beyond their design limits. Vibration may have played a secondary
role in causing the fallure of the overheated n-type thermoelements.
Exrceeding the design limits in temperature was, in turn, the re-
sult of encountering temperature gradients not found 1n the screening
of single thermoelements, the 1000-hr. operation of a p-n couple,
or the 150-hr. opera%%ﬁn of 3-ring generator subassembly modules,
previously reported. )

Disassembly of the generator into individual tilers or rings
revealed that none of the p-type elements had falled completely,
but 13 out of 92 showed visible evidence of change at the inter-
medlate Jjunctlior.. This was assumed to indicate inciplent damage
that might lead to fallure and these thermoelements will be replaced
if such damage is veriflied in re-testing. These elements were lo-
cated in modules (half-tiers) where n-type thermoelements failed.
The p-type thermoelements 1in such half-tiers would have operated
hotter due to the reduced number of therma® paths remaining after