Free of Hexavalent Chromium

The Thick Layer Passivation for Zinc and Zinc Alloys

Chrom^I ting

SurTec GmbH, SurTec-Straße 2, D-64673 Zwingenberg

- Corrosion and Corrosion Protection
- ▼ Cathodic Corrosion Protection of Steel
- Properties of Conventional Chromates
- Application, Properties and Corrosion Protection of Chromiting
- ▼ Outlook

April 2001

- ▼ steel is dissolved in salt and air containing water while oxygen is reduced and hydrogen is evolved, and forms iron oxide/hydroxide which precipitates as a voluminous corrosion product on the surface = **Red Rust**
- ▼ iron oxide layers are not protecting against further corrosion, in contrary to chromium oxide on metallic chromium or aluminium oxide on aluminium

corrosion protection is provided:

barrier layers
 oil, conversion layers, lacquer, combination, metallic layers
 less noble layers, conversions layers with different oxidation levels, organic corrosion protectors
 duplex layers
 combination of both

SurTec GmbH

Cathodic Corrosion Protection of Steel

- ▼ this is the typical method to protect steel and other iron material, because in the electrochemical series of elements, iron is more positive than zinc, and this means
- ▼ zinc is less noble than iron and represents the anode in the galvanic element iron is the cathode
- ▼ thus, iron will be as the more noble metal protected cathodically, until the zinc is corroded completely

SurTec GmbH

April 2001

- ▼ basic task is the protection of the base metal against rust and consequently also against hydrogen induced embrittlement
- side purposes are a decorative function (brightness, colour) as well as tribological properties
- higher layer thickness and more even metal distribution are extending the cathodic corrosion protection

- ▼ zinc alloys (Co, Fe, Ni, Sn) are more noble than pure zinc and extend also its cathodic corrosion protection
- ▼ in addition to the cathodic protection, the zinc layer is passivated by a chromate layer, which is improving strongly the corrosion protection (by its barrier effect)
- ▼ the colour is defined by the chromating: possible tints are transparent-blue and transparent-green (trivalent) as well as yellow, black and olive green (hexavalent)

SurTec GmbH

Cathodic Corrosion Protection of Steel

April 2001

zinc

mechanism:	cathodic protection
parameters:	thickness, metal distribution, trace metals (e.g. alloys)

passivation

mechanism:	barrier effect, specific effect of chromium(VI)
parameters:	2

type	chromium(VI) in the chromate layer in mg/m ²	layer thickness in nm	corrosion protection in hours salt spray test until first white corrosion	
blue (trivalent)	0	25-80	20-40	
yellow	80-220	250-500	200-300	
olive-green	300-400	1000-1500	400-500	
black	80-400	250-1000	150-300	

SurTec GmbH

Properties of Conventional Chromates

Blauchromatierung

60 nm

Zink

edge of a broken steel sheet, bright zinc plated and hexavalent **yellow passivated**, at a magnification of 40,000x

• if chromium(VI) had a specific corrosion protecting effect, we shall always expect a disadvantage with trivalent chromates with regard to its anticorrosive properties

8

300 nm

 if the corrosion protection of a chromate layer was based on it barrier effect only, then trivalent passivations with the same layer thickness should provide the same corrosion protection as hexavalent passivations

SurTec GmbH

April 2001

10

Application: Chromiting in Comparison to Yellow Chromate

	trivalent Chromiting	hexavalent yellow chromate			
make-up:	12.5 Vol%	1 Vol%			
	= 10 g/l Cr(III)	= 2 g/l Cr(VI)			
pH-value:	1.8-2.2	1.6-1.8			
temperature:	60 °C	room temperature			
contact time:	60 s	20 s			
heating:	necessary	in winter season			
exhaust:	necessary	recommended			
rinsing:	3 steps	2 steps			
activation:		recommended			
agitation:	rack agitation/ba	rack agitation/barrel rotation and/or air agitation			
tank material:	(insulated) plastic tar	(insulated) plastic tanks or steel tanks with plastic inliner			

The Green Alternative

SurTec GmbH

April 2001

12 100 ₇ % zinc 80 60 Chromiting 40 20 100 ₇ % chromium zinc sputter depth in µm 0 0,0 80 0,6 0,8 0,2 0,4 1,0 60 **Yellow Chromate** 40 20 chromium sputter depth in µm 0

0,8

1,0

April 2001

Sputter Profiles in Comparison

0,4

0,2

0,6

Layer Thickness in nm

ellipsometry, glow discharge spectroscopy (GDOES) and scanning electron microscopy

	immersion time in s	temperature in °C	pH-value	scanning electron microscopy	glow discharge spectroscopy	ellipsometry
Chromiting	60	60	2.0	300	312	353
	120	60	2.0		400	440
	60	60	2.5		195	230
	90	60	2.5		295	300
	120	60	2.5		435	400
	60	100	2.0		360	580
in comparison:						
Blue Chromate				60	60	100
Yellow Chromate				300	440	395

SurTec GmbH

Chromium Content in the Chrom*i***ting Layer**

depending on the immersion time

April 2001

SurTec GmbH

German "Qualitätsförderkreis Chromitierung" (just founded)

- ▼ application of Chromiting, Black Chromiting and possible further developments
- ▼ exchange of experience (trouble shooting)
- ▼ commitment to keep narrow parameter ranges for the coating
- development and guarantee of common standards (measuring procedures, setting and guaranteeing process safety, reproducibility)
- task: to provide capacity in a sufficient volume and in constantly high quality

April 2001

1. Chromiting on Zinc

The natural colour is transparent and significantly green iridescent. This colour is no body colour caused by pigments, but a layer thickness related interference colour. A significantly green layer has a thickness of 100-700 nm.

This colour will disappear completely after an organic sealing with SurTec 552 or 555 (different refraction index than the passivation itself).

2. Chromiting on Zinc/Iron or Zinc/Nickel

The colour of Chromiting on zinc/iron is stronger iridescent and slightly darker. Also here it is disappearing to a great extent by an organic sealer, resulting in a colour similar to that of titanium. On zinc/nickel, a thinner Chromiting layer appears dark blue - iridescent; thicker layers are looking yellowish-green. After sealing, a uniform grey shade is formed.

2. Chromiting on Other Surfaces

On zinc/cobalt, the colour is similar to zinc/iron, but the layer composition of zinc/cobalt is less uniform and so is its colour. On hot dip zinc, it is opaque greyish green, on zinc dye cast often spotted (copper!).

SurTec GmbH

Outlook: Other Colours

What About Black Chromitings?

- black layers on zinc/iron are possible with a variation of Chromiting; its further optimisation is a current project
- black layers on zinc/cobalt are possible with the same solution (but less uniform)
- for zinc/nickel there is no Black Chromiting up to now

Dyeability

- high-coloured dyes can be used to tint the layer; blue, yellow, "brass" and pinkish-red are already tested
- black dyes (as for aluminium) are to weak in colour to result in an opaque black colour

April 2001

- ▼ minimal traces (between 1-3 mg/m²) of chromium(VI) are always present in high amounts of chromium(III), due to the chemical equilibrium
- ▼ the analysis of chromium(VI) traces in chromium(III) bulk is not trivial
- a theoretical replacement for chromium(VI) in passivations must fulfil a series of criteria:

Chemical Properties

- good water solubility in acidic pH (a conversion layer always requires a prior etching)
- the formation of oxides, insoluble in water, acids and lyes

General

- availability (mass production)
- recyclability
- low raw material costs
- known toxicology of all possible oxidation levels

SurTec GmbH

Outlook: Completely Chromium-Free Layers?

the solubility of element oxides is coded in greys. light grey = insoluble in water; grey = insoluble in acids **or** lyes; dark grey = insoluble both in acids **and** lyes

April 2001

Conclusion

- Chromium(III) is the best alternative to Chromium(VI), other more appropriate elements are not in sight
- with trivalent thick layer passivations (Chromiting), the requirements of the EU End of Life Vehicles Directive are easily met
 (2 g chromium(VI) per car are allowing 600 to 2000 m² passivated surface)
- in collaboration with the VDA, chemical suppliers are developing an analytical method for the detection of chromium(VI) in passivations

April 2001