SurTec 680 Chromitierung

Tests and Results of Automotive Industries and Suppliers

Companies: Audi

Bundy (UK) Ltd.

Continental Teves

General Motors / Opel

Lucas

Major Car Supplier in Japan

P&J Industries / Lucas/Varity

Toyota

Volkswagen

SurTec GmbH 17. Mai 2001/PV

Type of Parts screws

Layer cyanide free alkaline zinc/nickel, ca. 8 µm, 14-15 % Ni

Chromiting 70 °C, 12,5 vol%, pH 1,9, 70 s

Topcoat without topcoat and with SurTec 555

Colour without topcoat: dark, yellow-blue, slightly iridescent, slightly dull

with SurTec 555: colourless, like metal

Test and Results Test according to TL 244 (heat treatment 24 h 120 °C)

test passed, after 720 h salt spray test:

without topcoat SurTec 555

start WR hazy surface

Conclusion Customer

Requirements of TL 244 are fulfilled

Type of Parts break tube parts

Layer acid zinc ca. 8 μm

Chromiting 60 °C, 12,5 vol%, pH 2,0, 60 s

Topcoat without topcoat and with SurTec 552

Colour without topcoat: pale, greenish iridescent, brilliant

with SurTec 552: colourless, brilliant, like metal

Test and Results Test according to DIN 50021 SS

186 h 0 % WR 360 h 0 % WR

480 h WR and black staining, 0 % RR

Conclusion Customer

Requirements of the customer are fulfilled

SurTec GmbH 17. Mai 2001/PV

Type of Parts break parts

Layer acid zinc, ca. 8 µm, rack process

Chromiting 60 °C, 12,5 vol%, pH 1,8-2,0, 45 s

Topcoat without topcoat

Colour pale, greenish iridescent, brilliant

Test and Results Test according to DIN 50021 SS

without and with heat treatment: 4 and 24 h at 130 °C,

4 and 24 h at 180 °C

all tested cases have been compared with a yellow chromating.

Conclusion Customer

In comparison to a yellow chromating, SurTec 680 was found to be better in all tested cases.

SurTec GmbH 17. Mai 2001/PV

Type of Parts zinc dyecast

Chromiting 60 °C, 12,5 vol%, pH 1,8-2,0, 60 s;

applicated directly onto the dyecast

Topcoat without topcoat

Colour dark, green-grey

Test and Results Salt spray test according to GMI 60 206-H-stage 3

test passed:

144 h <5 % WR

Conclusion Customer

SurTec 680 can be used for passivating zinc dyecast directly.

Furthermore, General Motors has specified SurTec 680 as a chromium(VI)free passivation for zinc and zinc alloys in **GME 00252**,

clause 9.3.4.1, Type 8

Type of Parts break parts

Layer acid zinc, ca. 8 µm, rack process

Chromiting 60 °C, 12,5 vol%, pH 1,8-2,0, 60 s

Topcoat without topcoat

Colour pale, greenish iridescent, brilliant

Test and Results Test according to DIN 50021

without heat treatment 2 h 200 °C

144 h 0 % WR 72 h 0 % WR

240 h 5-10 % WR 240 h 10-15 % WR

Conclusion Customer

In comparison to a yellow chromating, SurTec 680 was found to be

better in all tested cases.

Type of Parts car parts

Layer alkaline cyanide free and cyanide zinc ca. 8 µm, barrel and rack

Chromiting 60 °C, 12,5 vol%, pH 2,0, 60 s

Topcoat without topcoat

Colour greenish iridescent, brilliant

Test and Results Test according to DIN 50021 SS

without heat treatment 30 min 200 °C

200 h start WR 200 h start WR

all tested cases have been compared with a yellow chromating

Conclusion Customer

In comparison to a yellow chromating, SurTec 680 was found to be

better in all tested cases.

SurTec 680 runs in a pilot plant and shall replace yellow chromating

in 2000.

Type of Parts brake parts

Layer zinc-carbon

Chromiting 60 °C, 12,5 vol%, pH 1,9, 60-80 s

Topcoat without topcoat

Colour green/yellow/red, iridescent, brilliant

Test and Results Salt spray test according to ASTM B-117

336 h start WR 480 h 5 % WR

1000 h <25 %WR, 0 % RR

Conclusion Customer

The layer sytem zinc-carbon + SurTec 680 was tested against the

system zinc/nickel + yellow chromating + top coat

and was found to be equally good.

Type of Parts test plates and various car parts

Layer zinc

Chromiting 60 °C, 12,5 vol%, pH 1,8-2,0, 60-80 s

Topcoat without topcoat

Colour greenish, iridescent, brilliant

Test and Results Salt spray test; the parts have been artificially damaged by crosscut;

all tests have been compared with yellow chromating and other

trivalent chromating solutions + top coat.

SurTec 680 was found to be as good as a yellow chromating

and at least as good as trivalent chromating + top coat

Conclusion Customer

SurTec 680 is the most favourite alternative for yellow chromating.

Especially, since it does not need any top coat for the demanded

protection against corrosion.

Type of Parts various screws

Layer acid zinc, barrel process, 8.4-9.5 μm

Chromiting 60 °C, 12,5 vol%, pH 1,8-2,0, 60-80 s

Topcoat without topcoat

Colour pale, greenish iridescent, brilliant

Test and Results Test according to TL 217, test passed

96 h start WR

168 h 10 % WR

288 h start RR

Conclusion Customer

Requirements of TL 217 are fulfilled

Type of Parts screws

Layer cyanide free alkaline zinc/nickel, ca. 8 µm, 14-15 % Ni

Chromiting 70 °C, 12,5 vol%, pH 2,0, 30-60 s

Topcoat without topcoat

Colour dark, yellow-blue, slightly iridescent, slightly dull

Test and Results Test according to TL 244 (heat treatment 24 h 120 °C)

test passed:

120 h 0 % WR 360 h <5 % WR

720 h 30 % WR, 0 % RR

Conclusion Customer

Requirements of TL 244 are fulfilled

Type of Parts screws

Layer cyanide zinc, ca. 8 µm, barrel process

Chromiting 60 °C, 12,5 vol%, pH 2,0, 30-60 s

Topcoat without topcoat

Colour greenish iridescent, brilliant

Test and Results Salt spray test according to DIN 50021 SS

without heat treatment 24 h 120 °C 8 h 200 °C

48 h 0 % WR 48 h 0 % WR 48 h 0 % WR

144 h 0 % RR 144 h 0 % RR 144 h 0 % RR

Conclusion Customer

Requirements of TL 217 are fulfilled.

Additionally, SurTec 680 was found to be more stable to

temperature treatment than a yellow chromating.