
POLLUTION PREVENTION TECHNOLOGIES FOR METAL FINISHING OPERATIONS

JULY 22, 1998

WORKSHOP 5

ENVIRONMENTAL TRAINING WORKSHOP FOR METAL FINISHERS

SPONSORED BY:

U.S. EPA

SURFACE TECHNOLOGY ASSOCIATION

PRESENTED BY: TETRA TECH EM INC.

EPA/STA Pollution Prevention Technical Assistance Project

. Training

- Workshop Series (series of 6)
- Operator Training Series (given multiple times)
- . Mini-Assessments
 - Working with 6 facilities currently
 - More facilities are being selected (Apply Now!)

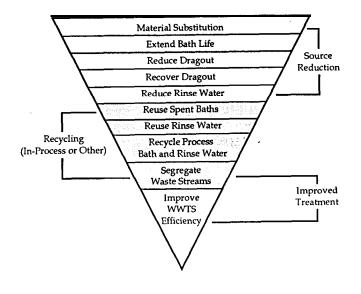
Training Workshop Series			
	Date and Time –		
Industrial Wastewater Discharge Compliance	✓ February 26		
Operator Training	✓ March 12		
Hazardous Waste Compliance and P2	✓ March 25		
P2 Through Process Control	✓ April 22		
Air Emissions Compliance and P2	✓ June 10		
Pollution Prevention Technologies	Today		
Enviro. Mgmt. System Approaches to P2	August 12, 4-8 pm		
Operator Training	August 19, 3 pm		

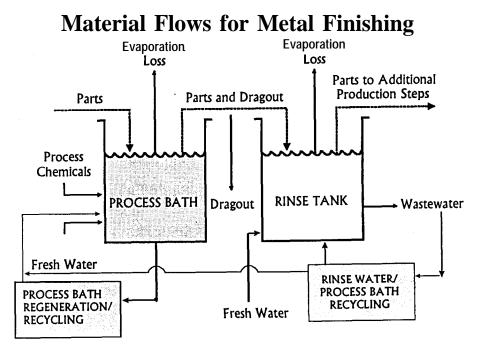
Course Objectives

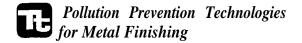
- Learn what needs to be done before investing in technology
- . Understand P2 technologies and their applications
- . Review successful case studies
- Identify opportunities for involvement in EPA/STA P2 project activities

Agenda

- Process Control and P2 Technology Design
- Process Bath Recycling Technologies
 - Electrodialysis
 - Diffusion dialysis
 - Electrowinning
- . Rinse Water Recycling
 - Reverse osmosis
 - Ion exchange
- . Wrap Up

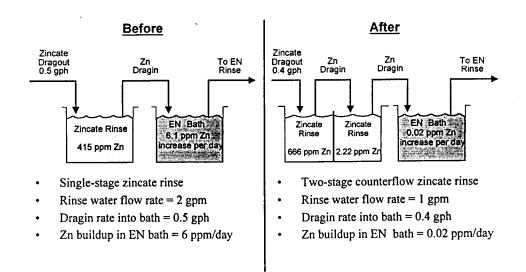

Unit 2 **First Things First: Process Control**


"To Control (and Reduce) Waste, You Must Control the Process"



Pollution Prevention Technologies for Metal Finishing

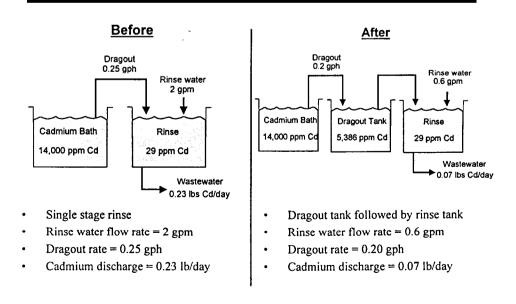
Hierarchy of P2 and Waste Management Strategies for Metal Finishing



Reducing Contaminant Buildup

- Contaminant buildup reduces process effectiveness and decreases bath life
- Common responses
 - Decant or dummy bath
 - Change bath frequently
- Process control approach
 - Reduce dragin
 - Improve rinse system design and operation

Reducing Contaminant Buildup



Reducing Rinse Water Flow Rates

- Rinse quality requirements cause high rinse water use
- Common responses
 - Size technology to respond to flow rates
 - Focus on technologies designed for continuous flow
- Process control approach
 - Reduce dragout
 - Improve rinse system design

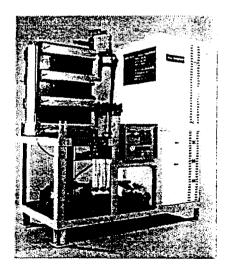
Reducing Rinse Water Flow Rates

Unit 3 - Process Bath and Chemical Recovery

Part 1: Electrodialysis

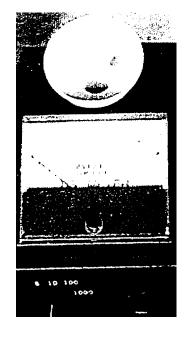
Repurification of Aged Electroless Nickel Baths by Electrodialysis

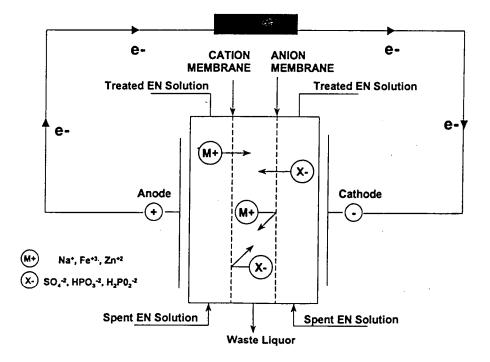
OMG Fidelity



IB Pollution Prevention Technologies for Metal Finishing

Why Use Electrodialysis ?


- . Maintain consistent deposition rate
- . Maintain consistent physical deposit properties
 - 1) Stress level
 - 2) Phosphorus content
 - 3) Deposit structure
 - 4) Corrosion protection
 - 5) Magnetic properties
- . Lower waste treatment volumes


Electrodialysis Unit

Myron L Meter

Rate of Deposition*

Bath Age	Rate (milc/hr)
0 MT0	0.50
4 MT0	0.28
Dialyzed	0.48

* High Phosphorous EN

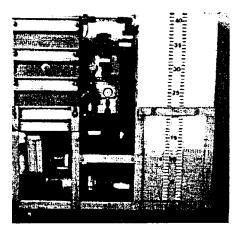
Deposit Stress*

Stress (psi) Bath Age

0 MT0	550
8 MT0	3010
Dialyzed	0

* Bright Medium Phosphorous EN

Cost Assumption


Standard Operation	Dialysis
25 Makeups = \$13,800.00	1 Makeup = \$551.66
100 MTO's = \$41,000.00	100 MTO's = \$41,000.00
Waste Treat = \$10,000.00	Waste Treat = \$1,320.00
(5000 gal @ \$2.00/gal)	(2640 gal @ \$0.50/gal)
Total Cost = \$64,800.00	Add Backs = \$3,300.00
	Total Cost = \$46,171.66
Savings/year	= \$18,628.34
Payback Period	= 10 months

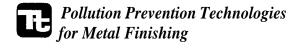
Benefits of Electrodialysis

- Consistent plating bath performance
- Improved deposit consistency
- Reduction in chemical expense
- . Reduced waste treatment costs
- . Decreased reject rate

Case Study Full-Scale Electrodialysis Unit

Case Study Full-Scale Implementation

- 60 hours to reduce 170-gallon bath used for 6 MTOs to 1 MTO equivalent
- . 30 diluate and concentrate compartments
- . 21 amps of electrical current
- . 380 watts per hour of electrical power
- . Footprint: 2' x 4'
- . Height: 4.5'
- . Capital Cost: \$28,000


EN Plating Comparison

Parameter	Before Electrodialysis	With Electrodialysis
⁷ EN Baths Per Year	71	3
trodialysis Regenerations Per Year		77
l Liquid Waste Solution Per Year	12,070 gallons	6,840 gallons
)s Per Bath	5 to 6	60
ct Rate - Cost	\$20,400	\$6,280

Case Study

Results

- Total EN process chemical use decreased by 25%
- Total liquid waste generation decreased by 33%
- Total liquid waste disposal cost decreased by 77%
- Significant decrease in "break-in" time
- Reject rates decreased 50%
- Total mass of nickel waste decreased by 56%
- Normal EN bath additions remained unchanged

Case Study

Annual Costs

Parameter	Before Electrodialysis	With Electrodialysis
EN Bath Operation		
New Bath Make-Up Chemical Cost	\$37,630	\$1,590
EN Chemical Additions	\$43,380	\$43,380
Spent Bath Treatment and Disposal	\$31,740	\$1,340
Labor for Make-Ups	\$1,780	\$75
EN Rejects	\$20,400	\$6,280
Electrodialysis O&M		
Regeneration Additions		\$15,550
Diluate Disposal		\$5,930
Labor -Regen. and Membrane Clean		\$400
Electricity		\$160
TOTAL	\$134,930	\$84,340

Case Study

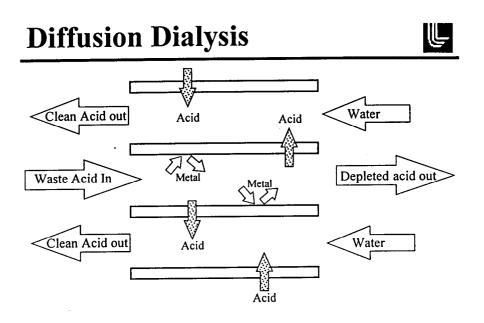
Payback Period

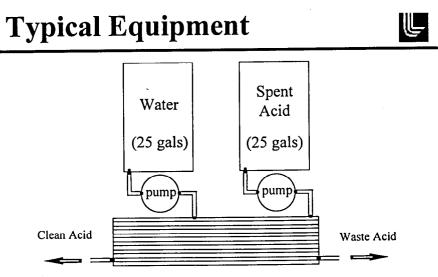
Total annual savings = \$50,600/year

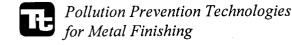
Total capital cost = \$28,225

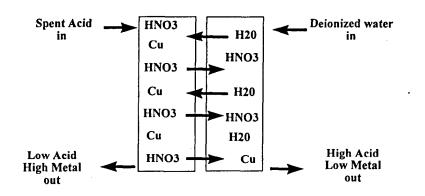
Payback period = 7 months

Overview


- Background
- . Equipment
- . Feed streams
- . Results
- Economics
- . Conclusions


Background


- The human body is the original dialysis system
- Graham in 1861 used parchment paper
- Originally to separate species of different sizes
 Salts, blood, gelatinous colloids
- Advancements in membrane technology
 - Improved chemical compatibility
 - Increased life expectancy
 - Higher allowable temperatures



Membrane stack

Waste Acid Recovery (batch)

Acid Feed & Waste Stream Volumes

- 55 gallons waste acid in
- 55 gallons DI water in
- 55 gallons Low Acid High Metal out
- 55 gallons High Acid Low Metal out

Results

Nitric - HF Pickle (9.0 N)

(start)

(finish)

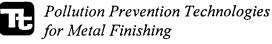
9.0 N Nitric Acid 15 gm/l iron 10 gm/l nickel

7.5 N Nitric Acid (83%) 2.5 gm/l iron (-83%) 1.7 gm/l iron (-83%)

Economics (for 55 gallons)

Nitric Acid (\$2.06/lb.)	Dispose	Recycle
–New chemicals	\$1300	\$260
–Disposal costs	\$350	\$150

Results



Sulfuric acid activator (5.0N)

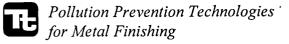
(start) 4.3 N Sulfuric Acid 45 gm/l iron (finish) 3.1 N Sulfuric Acid (72%) 7.9 gm/l iron (-82%)

Economics (for 55 gallons)

Sulfuric Acid (\$0.34/lb.)	Dispose	Recycle
New chemicals	\$120	\$55
Disposal costs	\$150	\$150

Results

Caustic etch


(start)	(finish)
1.5 N NaOH	1.3 N NaOH (85%)
35 gm/l aluminum	7.1 gm/l aluminum (-79%)

<u>Economics (for 55 gallons)</u>		
NaOH (\$1.18/lb.)	Dispose	Recycle
New chemicals	\$20	\$8
Disposal costs	\$150	\$150

Operation & Maintenance

- Temperature-dependent

 higher temp = faster processing
- Filtered solutions are a must
 < 5 micron (< 1 is better)
- Metal / acid ratio must be in range
 If too low, metal will precipitate and clog
- Both sides of system flushed every 2 weeks
 Removes metal residue, maintains efficiency
- Should be stored filled with deionized water

Conclusions

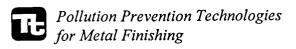
- Acids and bases can be recycled
 - Waste solutions
 - Tank maintenance
- Cost-effective depending on volume & controls
- Payback times depend on loading and usage
- Over 20 vendors offering systems
- Over 200 installed systems in U.S.

Motivation for Pursuing P2

- Process control and efficiency extending the life of acid bath
- Reduction of reject rate of parts due to rack strip quality
- Reduced operating costs
- Compliance with the Toxic Use Reduction Act (TURA)
- Lower worker exposure to acid
- Concern for the environment

Diffusion Dialysis

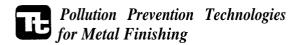
- Optimal flow. rate of spent acid stream and recovered acid stream is approximately 15 gallons/day
- Operates directly on-line with continuous process bath flow
- Approximately 10 gallons/week of fresh acid is added to stripping bath

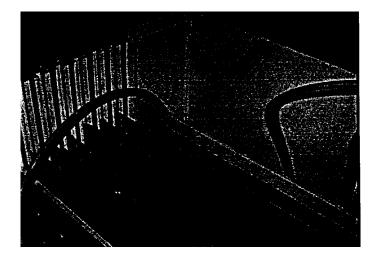


Diffusion Dialysis Results

Savings			
and the second state of the second	cid use	\$2	2,761
Hazardo	ous waste di	sposal \$.	3,200
TURA	fees	\$	1,100
0 & M	Costs		
Water,	Filter, Electr	icity	\$217
Net Sav	vings	\$	5,844

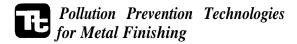
Diffusion Dialysis Capital Costs


Item	Cost
Pure Cycle AJ-20 Acid Recycling System	\$15,800
Increased Capacity Tank	\$987
Modified Ventilation System	\$4,230
Filter Reservoir	\$1,473
Flo-King Filter model BX-1200-8	\$460
Electrical/Plumbing	\$1,000
Barrel Deposits	(\$4,500)
Total	\$19,450


Unit 3 - Process Bath and Chemical Recovery Part 3: Electrowinning

Electrowinning Use

- Used to recover metals from concentrated solution
- Most commonly installed on dragout rinses
- 19% of shops use electrowinning according to a 1995 NAMF survey



Electrowinning Unit

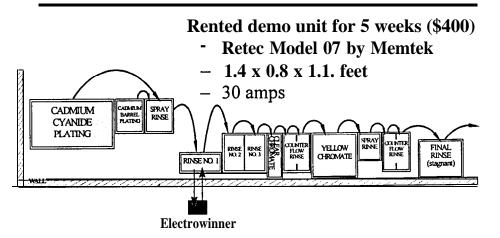
Common Applications

- Gold
- Silver
- Copper
- Cadmium
- Zinc

Cathodes and Metal Concentration

- Cathode types
 - Flat plate
 - Reticulated
- Deposition rate is proportional to target metal concentration

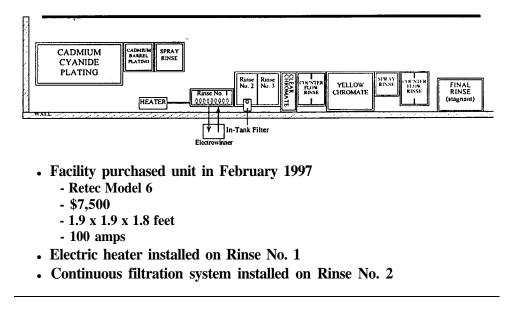
Electrowinning Case Study

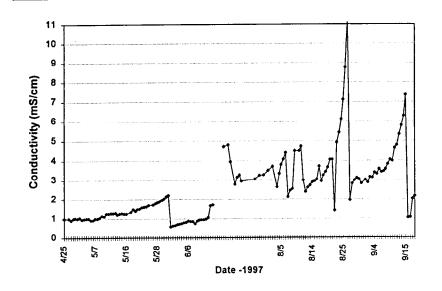


Case Study

Phase I: Tank Layout

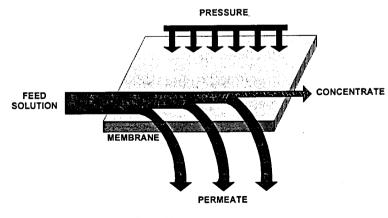
- Dragout losses reduced 50%
- Rinse water flow reduced 50%
- Improved rinsing
- More efficient work flow
- Lower concentration of metals in WWTS discharge



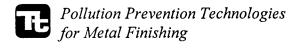

Electrowinning Trial Conclusions

- Rinse water should be moved into Rinse No. 1 at a faster rate
- . Rinse No. 1 may need to be periodically poured into plating bath or dumped
- Larger unit may better accommodate production variations
- Water use and wastewater discharge significantly decreased!

Electrowinning Configuration

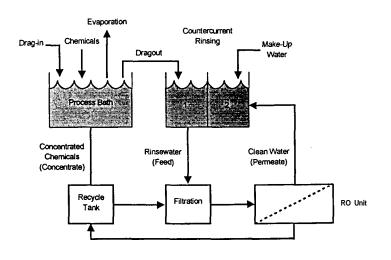

Electrowinning Costs

- Layout Modifications
 - Counterflow and spray rinse = \$1,300
 - Installation = \$960
- Electrowinning
 - Electrowinner = \$7,500
 - Heater = \$690
 - Filtration unit = \$570
 - Electrical = \$250
 - Installation = \$400
- 0&M
 - Electricity = \$20/mo
 - Cathodes = $\frac{290}{yr}$


Unit 4 - Rinse Water Recycling

Part 1: Reverse Osmosis

Reverse Osmosis Technology Description


"Crossflow filtration"

Present Uses of RO

- Water purification
- Recycle segregated rinsewaters.
 - Concentrate returned to process bath
 - Permeate reused as rinsewater
 - "Closed-loop" application

Process Flow with RO

RO Membrane Materials

Membrane Material	pH	Maximum [*] Temperature	Other.
Cellulose Acetate	2.5 to 7	85 to 122 °F	Biologically Degradable
Aromatic Polyamides	4 to 11	95 to 115 °F	Cannot tolerate chlorine

RO Membrane Designs

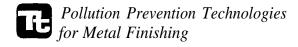
Membrane . Design	Cost	Membrane • Types •	Fouling Resistance	Cleanability
Spiral Wound	Low	Many	Fair	Fair
Hollow Fiber	Low	Few	Poor	Poor
Capillary	Moderate	Many	Very good	Very good
Tubular	High	Few	Very good	Very good
Plate and Frame	Moderate	Many	Poor	Fair

RO Cost

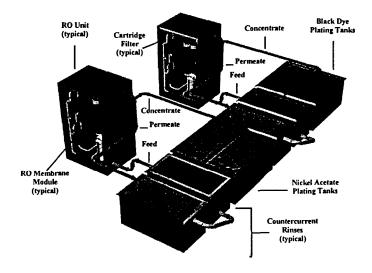
- . Capital cost: \$10,000 to \$50,000
- O&M costs (per 1,000 gallons treated)
 - Labor
 - Energy
 - Cleaning chemicals
 - Membrane replacement
 - Total Cost: \$2 to \$5

RO Advantages

- Concentrate stream can be used to replenish process bath
- Permeate stream can be used as rinse water
- . Low energy process
- . Low O&M costs
- . Easily upgradable
- Low labor required compared to other technologies

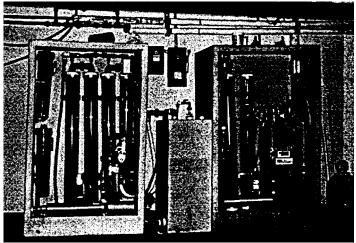


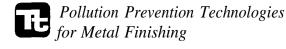
RO Case Study


Case Study

Facility Description

- Specializes in:
 - Standard type 2 and hard type 3 anodizing
 - Chemfilm
 - Stainless steel passivation
 - Dye coloring
- · Anodize small- to medium-sized parts
 - Commercial and military parts
 - Flashlight parts
 - Bicycle parts




Case Study: Black Dye and Nickel Acetate Configuration after RO Installation

Case Study

RO Results for Black Dye Operations

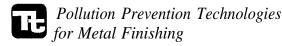

			Monthly
	<u>Before</u>	<u>After</u>	<u>Savings</u>
City Water	3 gpm	0 gpm	\$ 83
POTW Discharge	3 gpm	0 gpm	\$133
Black Dye Chemical	21 lbs/mo	o 9 lbs/mo	\$293

Total Savings: \$6,100/yr Total Cost: \$10,000 Payback Period: < 2 years

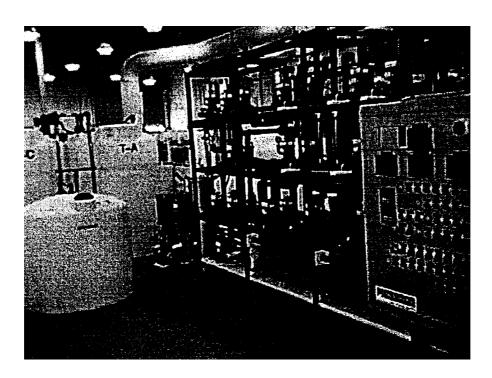
Case Study

Facility Description

- Wheelchair manufacturer
 - Nickel and chrome plating
 - Stringent wastewater discharge limitations on total dissolved solids and boron


Unit 4 - Rinse Water Recycling

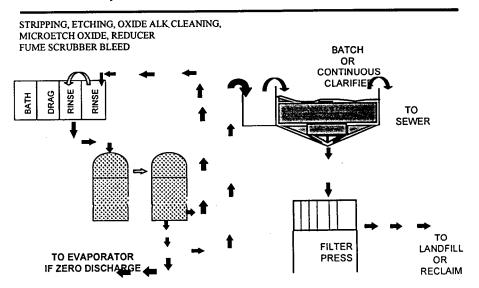
Part 2: Closed-Loop Rinsewater Recycling Using an Improved Ion Exchange Process

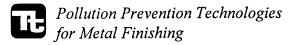

Discussion Topics

- How ion exchange works
- Where ion exchange fits
- Problems with conventional ion exchange systems
- Description of patented 786 Process
- Operating cost comparison
- Gold Seal case study

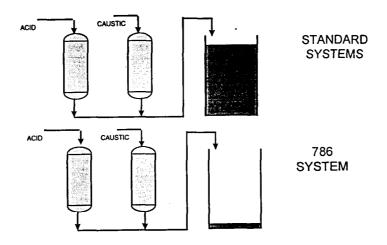
Metal Selective Ion Exchange

- Used in recovery precious metals
- . Found on end-of-pipe systems
- Applications in bath recycling
- Used when electrowinning regenerant
- Not compatible with recycling

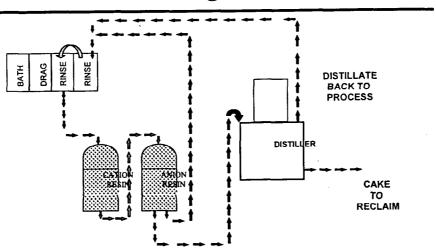




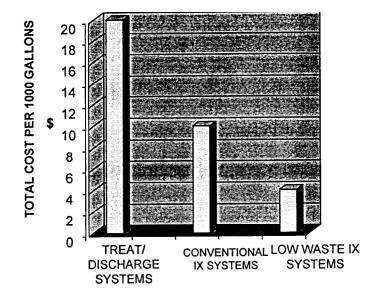
Recycling Incentives


- Achieve zero sewer discharge
- Achieve batch treat mode to assure compliance
- Have high flow rates through rinse tanks for better quality
- Lower operating costs

Where Ion Exchange Fits (Inorganic Rinses)



Regenerant Comparison


Zero Sewer Discharge

Pollution Prevention Technologies for Metal Finishing

Operating Cost Comparison

Case Study

Gold Seal Background

- Initiated by Cal EPA Department of Toxic Substances Control (DTSC)
- Motive to highlight technology with significant environmental impact
- Completed in December 1996
- Received CWEA Industrial & Hazardous Facility of the Year Award - 1996

Case Study

California EPA - Gold Seal Plating

W/O Recovery System (6 gpm)	Annual Amount	Unit Cost	Annual Cost
Incoming City Water (Rinse)	2,170,000 gal	\$0.0045/gal	\$9,800
Wastewater	2,170,000 gai	\$0.00+51 But	\$7,000
Treatment	2,170,000 gal	\$0.007/gal	\$15,500
Sludge Recycling	73,150 lbs	· \$0.33/Ib	\$24,100
Permit			\$11,400
Outside Lab Testing			\$2,200
TOTAL			\$63,000

Case Study

Recycling Plus Zero Discharge to Sewer

With Recovery (12-15 gpm)	Annual Amount	Unit Cost	Annual Cost
Incoming City	260,0001	\$0.0045/gal	\$1,200
Water (Make up)	260,000 gal	50.0045/gai	\$1,200
Chemicals	11.4001	£1 42/act	\$16,200
(Regenerant)	11,400 gal	\$1.42/gal	\$10,200
Energy			63 400
(Evaporators)	70,200 gal	\$0.034/lb	\$2,400
Sludge Recycling	36,000 lbs	\$0.36/lb	\$13,000
Permit	•••		\$0
Outside Lab			
Testing			\$ 0
TOTAL			\$32,800

Pollution Prevention Technologies for Metal Finishing

Company Background

- Established in 1989
- Ion Exchange based on specialty separations
- 786 technology was introduced in 1995
- Worldwide patents applied for 2 U.S. patents approved

Partial Users List

- Gold Seal Plating Oakland
- QLP Laminated Division Santa Ana
- Allied Signal Irvine
- MEKTEC Milpitas
- Hughes Research Labs Malibu
- Aero Electric Connectors Torrance
- Electrochem Hayward (In construction)
- Packard Hughes Irvine (In construction)

Unit 5 Wrap Up

Pollution Prevention Technologies

- "First things first"
- Process bath regeneration/recycling
 - electrodialysis
 - diffusion dialysis
 - electrowinning
- Rinsewater recycling
 - reverse osmosis
 - ion exchange

Pollution Prevention Technologies for Metal Finishing

Mini-Assessments

FREE technical assistance to motivated facilities to help them select and implement cost-effective Pollution Prevention "fixes"

> 6 facilities already selected More will be selected (Apply Now!)

