Pretreatment of Metals 
Prior to Powder Coating 
& Troubleshooting of Powder Coating

By Charles Grubbs, CEF, AESF Fellow 
& David Montgomery, CEF, AESF Fellow

Metal Pretreatment
Most industry-accepted methods for pretreatment of metals are suitable for metals destined to be powder coated. Proper cleaning and pretreatment is essential for good adhesion. Typically, the cleaned material is pretreated with either a chromate or chrome-phosphate conversion coating prior to painting.

Coating Procedure
Powder should be sprayed on the parts in a diffused pattern to ensure an even coating. The guns should be held about four inches from the work. At least one cross coat is needed.

The actual technique will vary from operator to operator, but for optimum flow and appearance, the thickness should be 2.5–3 mils. Racks and fixtures must be kept clean for high transfer efficiency of powder as well as for safety considerations. Hooks in series should be avoided.

Tips for Metal Pretreatment
For Powder Coating
- Start with clean substrate
- Conversion coat (chrome or chrome phosphate)
- Spray in diffused pattern
- Spray guns—4 in. from work area
- Cross coats: Minimum of one needed
- Coating thickness: 2.5–3.0 mils
- Keep racks & fixtures clean
- Powder must be clean & dry
- Keep the line short between air filters/moisture separators & spray unit
- Check moisture content frequently
- Guns must be clean & properly adjusted

To ensure that the powder is both clean and dry, air filters and moisture separators should be as close to the spray unit as possible. The moisture content of the air supply should be frequently checked.

The guns must be kept clean and properly adjusted. Poor adjustment can result in rejects or uneven film thickness. Powder supply lines should be as short as possible.

Troubleshooting Powder Coating
The powder coating booth itself may have problems with contamination, as well as part coverage and powder recovery percentages. Contamination can come from the air supply, hangers, conveyor systems and the recovered powder.

Physical properties: Poor treatment, properties moist or contaminated air supply

Poor gloss: Moist powder, poor grounding, excessive reclaim powder

Orange peel/ poor adhesion: Moist powder, high coating thickness, poor pretreatment, low curing

Dust in coating: Air/oven contamination, pretreatment problems, powder reclaim

Brittleness: Insufficient cure

Yellowing: Over-bake, oven/air contamination

Editor’s note: This information was excerpted from the “Organic Finishing of Light Metals” lecture in AESF’s new Light Metals Finishing Course. The course will be given on December 6-8 in Elk Grove Village, IL.

About the Authors
Charles Grubbs, CEF, AESF Fellow, is employed by Houghton Metal Finishing in Alpharetta, GA. He is chairman of AESF’s Light Metals Finishing Committee and organizes SUR/FIN® technical sessions for light metals interests. He is also co-author of a number of the light metals course lectures and finishing articles in a number of magazines.

David Montgomery, CEF, AESF Fellow, Montgomery Consulting, Waxahaw, NC, serves as an advisor to the Light Metals Finishing Committee and is a former columnist for P&SF. He also is a co-author on several of the light metals course lectures.