The experimental dependence of the apparent constant of formation of polychromic particles \((K_{\text{p}})\) on \(pH\) was determined by the static ion chromatography method. The equilibrium forms of Cr(VI) particles were estimated in solutions of acids. The effect of the presence of substituted chromates on distribution of equilibrium forms of chromic acid was evaluated. The change of acidic properties of Cr(VI) solutions was calculated with introduction of anions of various acids into their composition.

A model of CrO\(_3\) solution has been proposed by the authors.\(^1\) It takes account of the law of conservation of neutrality, equilibrium in the presence of polychromates, material balances of Cr(VI), and both total and free acidity, as well as the acidity formed (or bonded) at stages of CrO\(_3\) solution titration by alkali.

Solution of a set of equations according to the model proposed made it possible to estimate the formation constants of CrO\(_{10}^\text{2-}\) and CrO\(_{13}^\text{3-}\) particles, using numerical methods. The division of polychromic acids into \(H_2\text{Cr}_n\text{O}_{3n+1}\) and \(H_3\text{Cr}_n\text{O}_{3n+1}\) is conventional.\(^2\) Accordingly, it is expedient to determine every apparent constant of formation of polychromic particles \((K_{\text{p}})\) on the basis of experimental data and to express their total concentration in terms of CrO\(_{10}^\text{2-}\) particle concentration.

Pure CrO\(_3\) solutions are very seldom used in practice. Electrolyte compositions used and meant for depositing chromate coatings, chromium plating and etching, contain anions of other organic and inorganic acids in addition to chromic acid (i.e., in essence, they are mixtures of solutions of acids).

It is suggested that in the case of concentrated CrO\(_3\) solutions, the equilibria occurring in them, in the presence of other acids, are modified, because substituted chromates, such as CrO\(_3\)Cl\(_\text{-}\), CrSO\(_4^\text{2-}\), HCrPO\(_4^\text{2-}\), and H\(_2\)CrPO\(_4^\text{2-}\), are developed.\(^3\) The chromium plating theory of J.P. Hoare\(^4\) is widely used. According to this theory, Cr(VI) is reduced to metallic Cr at the cathode by the products of interaction between the ions of trichromic acid, HCr\(_2\text{O}_{6}^\text{-}\), and those of HSO\(_4^\text{-}\). There is good reason to calculate the equilibrium in solutions of chromic acid, in the presence of anions of other acids, to predict their acidic properties and availability of substituted chromates.

Experimental Procedure
To determine experimentally the apparent constant of formation of polychromic particles, the chromic acid solution model was used, plus the static variant of the ion exchange chromatography described in detail and discussed in our previous paper.\(^1\) The anionite AB-17 (manufactured in Russia) was used in the form of the chloride salt (the fraction > 0.3 mm). From 0.7 to 10 g/L of the anionite was added to acidified \((C_{\text{H}+} = 0.01 \text{ to } 0.4 \text{ mol/dm}^3)\) solutions of chromic acid \((C_{\text{CrO}_3} = 0.05 \text{ to } 0.2 \text{ mol/dm}^3)\) and agitated by a magnetic stirrer for 5 to 30 min. The quantity of the anionite added was the amount necessary to absorb Cr(VI) completely, with an excess of 15 percent. After separating the anionite in the filtrates, the Cr(VI) content was determined by the classical method of iodometric titration by sodium thiosulfate. The Cl\(^-\) evolved was determined mercurometrically, using sodium nitroferricyanide as an indicator. The total acidity \((C_{\text{H}+})\) was determined by alkaline potentiometric titration.

The concentration of Cr(VI) \([\Delta C_{\text{CrO}_3} \equiv C_{\text{CrO}_3}^\text{eq}]\) and that of bound acidity \((C_{\text{H}+} - C_{\text{H}+}^\text{eq})\) were calculated from the difference between the initial concentration and the concentration determined after anion exchange experiments. The quantities of chromic acid particles absorbed by the anionite \((\Delta C_{\text{CrO}_3})\) and the Cl\(^-\) evolved were recalculated for the stock solution. It should be noted that the concentration of Cl\(^-\) evolved in CrO\(_3\) solutions free from other acids corresponds to the concentration of free acid \((C_{\text{H}+}^\text{eq} \equiv C_{\text{H}+}^\text{free})\). It should also be noted that the pH of the chromic acid solution does not change in the experiments on anion exchange. In this connection, the equilibria between the particles of chromic acid do not change markedly in the course of the experiments (5-30 min).

The experimental data on determination of \(C_{\text{CrO}_3}, C_{\text{H}+}^\text{eq}, C_{\text{H}+}^\text{free}\) and \(C_{\text{H}+}^\text{ion}\) were substituted into the corresponding equations of material balances of the authors’ model of chromic acid solution.\(^1\) When solving these equations together with equations of electrical neutrality, the data on the presence of condensed chromic acid particles greater than 2 in the solution were obtained. The apparent constant of formation of polychromic particles, \(\text{CrO}_3^\text{2-} (n>2)\), was calculated as \(\text{CrO}_3^\text{2-}\) and its dependence on pH was also determined.

All concentrations are given in moles \((M=\text{mol/dm}^3)\). With either increase or decrease in pH of CrO\(_3\) solutions, to calculate their composition, it was assumed that the electrical neutrality of the solutions is retained on introduction of either univalent \(\text{Na}^+\) \((\text{NaOH})\) or \(\text{Cl}^-\) \((\text{HCl})\) ions, respectively.

Results and Discussion
The table lists a part of the experimental data obtained by investigating the polyforms of chromic acid and shows the values of \(K_{\text{p}}\) by solving the set of equations. The curve 1 and Eq. (1) for curve 2.
equations describing the model of chromic acid solution by the authors.1 It should be noted that, when solving these equations, the influence of the contribution made by polychromic acids on the distribution of Cr(VI) in the solution is reflected through the particles of \(\text{Cr}_n \text{O}_{3n+1} \) (with \(n > 2 \)), according to the equation

\[
\text{H}^+ + \text{HCrO}_4^- + \text{Cr}_n \text{O}_{3n+2} = \text{Cr}_n \text{O}_{3n+2} + \text{H}_2\text{O}.
\]

Figure 1 shows the dependence of \(K_{3p} \) on the pH of the Cr(VI) solution. A simplified approximation for the straight-line dependence calculated by the method of least squares (curve 1) is expressed by the equation

\[
\log K_{3p} = 6.736 - 2.416 \cdot \text{pH} \quad (1)
\]

A more exact analytical description of the experimental data of curve 2 is written as

\[
\log K_{3p} = 4 - \text{pH} - \frac{8}{\pi} \cdot \arctan uv \quad (2)
\]

where \(u= 1.4 \text{pH} - 2.2 \) and \(v = 0.6 - 0.4t(u + 1) \).

Figure 2 shows calculations of Cr(VI) particle distribution in 0.2 M solution, depending on its pH by the model1 and taking into account \(K_{3p} \) by Eq. (1) and (2). Extrapolation of the approximating curves shown in Fig. 1 is usually correct within no more than a tenth of the range under investigation. As it follows from the data of Fig. 2, however, there are actually no polychromic particles when the pH of a Cr(VI) solution exceeds 2. The difference in Cr(VI) distribution in the particles of either \(\text{Cr}_n \text{O}_{3n+2} \) or \(\text{Cr}_n \text{O}_{3n+2} \), depending on the application while calculating equations (1) or (2), is particularly significant when changing the pH of a Cr(VI) solution from 1 to 2.

It should be noted that under alkaline titration of Cr(VI) solutions (when calculating the total acidity), one mole of \(\text{Cr}_n \text{O}_{3n+2} \) generates \(2\text{H}^+ \) moles, and one mole of \(\text{Cr}_n \text{O}_{3n+2} \) generates \(4\text{H}^+ \) moles.1 This circumstance should be taken into account when calculating (e.g., the gradient of total acidity concentrations in the diffusion layer during corrosion of zinc in chromating solutions with initial pH ranging from 1 to 2). The employment of equation (2) in calculations helps avoid significant errors in such cases.

Figure 3 shows distribution of dominating particles in a Cr(VI) solution, depending on \(C_{\text{CrO}_3} \) and pH. The dependence of the solution pH on the chromic acid (CrO\textsubscript{3}) concentration is shown as a dashed line. It should be noted that with increase in acidity (pH < 1) of the solution within a wide range of Cr(VI) concentration (0.003 to 3.0 M) the polychromate of \(\text{Cr}_n \text{O}_{3n+1} \) (with \(n > 2 \)) is the dominating particle of Cr(VI).

Estimation of the apparent constant of formation of polychromic acid particles is based on the solution model described earlier1 and on a generally accepted concept of the effect of the solution ionic strength on that model. To estimate equilibria in solutions of chromic acid in the presence of substituted chromates, the following equilibria were taken into account, in addition to those previously described:1

\[
[\text{HCrO}_4^-] + [\text{H}^+] + [\text{Cl}^-] = [\text{CrO}_3\text{Cl}^-] + [\text{H}_2\text{O}] \quad (3)
\]

\[
\log K_{\text{CrCl}} = 1.23 \quad (I = 1.0 \text{ M})^3
\]

\[
[\text{HCrO}_4^-] + [\text{HSO}_4^-] = [\text{CrSO}_7^{2-}] + [\text{H}_2\text{O}] \quad (4)
\]

\[
\log K_{\text{CrS}} = 0.613 \quad (I = 3.0 \text{ M})^3
\]

\[
[\text{HCrO}_4^-] + [\text{H}_2\text{PO}_4^-] = [\text{H}_2\text{CrPO}_7^{2-}] + [\text{H}_2\text{O}] \quad (5)
\]

\[
\log K_{\text{CrP1}} = 0.973 \quad (I = 0.25 \text{ M})^6
\]

\[
[\text{HCrO}_4^-] + [\text{H}_3\text{PO}_4^-] = [\text{H}_2\text{CrPO}_7^{2-}] + [\text{H}_2\text{O}] \quad (6)
\]

As can be seen from the calculated data, the equilibrium concentrations of substituted chromates CrO\textsubscript{3}Cl- and CrSO\textsubscript{7}2- make up a negligible part of equilibrium concentrations of chromic acid particles within a wide range of concentrations of HCl (Fig. 4) and H\textsubscript{2}SO\textsubscript{4} (Fig. 5) in 0.05 M solution of CrO\textsubscript{3}. Quite a different picture is observed when phosphoric acid is introduced into the solution of CrO\textsubscript{3} (Fig. 6). The equilibrium concentration of the substituted chromate H\textsubscript{2}CrPO\textsubscript{7}2- constitutes about 60 percent of equilibrium concentrations of Cr(VI) particles in the presence of 0.05 M CrO\textsubscript{3} in 1 M H\textsubscript{3}PO\textsubscript{4}. This circumstance should be taken into account when analyzing the influence of Cr(VI) solution composition on electrochemical processes proceeding during corrosion of metals in Cr(VI)-containing media, as well as in the course of chromating and chromium plating of metals.

To estimate the conditions of substituted chromate formation, calculations were carried out for solutions of Cr(VI)
within wide ranges of CrO₃ concentrations and acidities. Figures 7-10 show the data obtained when calculating the equilibrium concentrations of substituted chromates, depending on concentrations of the free acid (pH) and Cr(VI) in 1 M solution of hydrochloric, sulfuric and phosphoric acids. It follows from the calculation data that it is possible to predict the presence of an appreciable amount of substituted chromates of CrO₃ Cl⁻ kind (Fig. 7) and of CrSO₄²⁻ (Fig. 8) one only in strongly acid solutions and in very dilute [with respect to Cr(VI)] solutions. When the solution pH exceeds 2, both chloride- and sulfate-substituted chromates are actually absent over the whole range of Cr(VI) concentrations (0.003 to 0.3 M).

H₂CrPO₄⁻ (Fig. 9) is the dominating equilibrium particle of Cr(VI) within the pH range from 1 to 2 in solutions of CrO₃ containing phosphoric acid, and the particle HCrPO₄⁻² (Fig. 10) predominates in the range of 2.5 to 5.5. This is true for solutions containing less than 0.1 M Cr(VI). According to Haigh et al., no substituted chromates are formed in solutions of chromic acid containing HNO₃, HClO₄, and CH₃COOH.

There are no data in the literature on equilibrium constants of formation of substituted chromates in solutions of chromic acid involving H₂BO₃, NH₂CH₂COOH, HCOOH and NH₄SO₄. Their presence in solutions of Cr(VI), however, significantly alters the acidic properties of the solution. As an example, Fig. 11 shows the calculated data of the influence of acids of different nature on the change in the total acidity of Cr(VI) solution, depending on its initial pH. Considering that many electroplating processes that use solutions of Cr(VI) for treating metal surfaces consume a considerable amount of H⁺ ions, the data analogous to those shown in Fig. 11 should help to choose the optimum solution composition in accordance with its acidic properties.

The calculations carried out for this study show that because of alkalization of the near-surface layer during corrosion of metals in acid solutions of Cr(VI), both composition and equilibrium concentrations of various ionic forms of chromic acid will differ significantly from the bulk solution composition. The mechanisms involving numerous possible ways of the course of homogeneous and heterogeneous reactions of oxidation by Cr(VI) are often conditioned by the diversity of Cr(VI) particles. Therefore, the data obtained should be considered in analytical determinations, investigations of corrosion of metals, electrodeposition of chromium and metal polishing.

Summary
The experimental dependence of the apparent constant formation of poly-chromium particles (K₃ₚ), calculated as Cr₁₀O₄³⁻, on pH was determined by the static ion chromatography method. The equilibrium forms of Cr(VI) particles were estimated in solutions of acids. The effect of the presence of substituted chromates on distribution of equilibrium forms of chromic acid was evaluated.

Fig. 7—Percentage distribution of CrO₃ Cl⁻ in solution of 1 M Cl⁻ as a function of pH and concentration of Cr(VI).

Fig. 8—Percentage distribution of CrSO₄²⁻ in solution of 1 M SO₄²⁻ as a function of pH and concentration of Cr(VI).

Fig. 9—Percentage distribution of H₂CrPO₄⁻ in solution of 1 M PO₄³⁻ as a function of pH and concentration of Cr(VI).

Fig. 10—Percentage distribution of HCrPO₄⁻² in solution of 1 M PO₄³⁻ as a function of pH and concentration of Cr(VI).

Fig. 11—Dependence of the total acidity CₙH⁺ of 0.3 M Cr(VI) solution on its pH and the presence of anions of acids (Ac⁻).
The change of acidic properties of Cr(VI) solutions was calculated with introduction of anions of various acids into their composition.

Editor's note: Manuscript received, May 1996.

References

About the Authors

Prof. Romas Šarmaitis is a senior research associate at the Institute of Chemistry (ICL), A. Goštauto 9, 2600 Vilnius, Lithuania. He is a graduate of the Chemical Department of Vilnius State University and has worked at the ICL since 1961. He holds a PhD in electrochemistry and the Hab.D. degree in physical chemistry from ICL. He has published more than 135 technical papers and patents in the field of zinc electrodeposition and chromate conversion coatings.

Dr. Vidmantas Dikinis is a senior research associate at the ICL, where he is involved in electroplating, mechanical plating and chemical conversion coatings, with special interest in chromating of metals. He is the author of 30 technical papers and patents and holds a PhD from ICL.

Dr. Violeta Rézaité is a research associate at the ICL. She has been working in the field of metal protection against corrosion, mainly investigating electroplating of zinc. She is the author of 17 papers and patents and holds a PhD from ICL.

Dr. Povilas-Vaidotas Stasiukaitis is a research associate at the ICL, where he is working in the field of electrochemistry. His prior experience was in the field of atomic physics and gas dynamics. He has published 20 scientific papers.

December 1996