Finishers' Think Tank

Stephen F. Rudy, CEF • Enequist Chemical Co. 100 Varick Avenue • Brooklyn, NY 11237 • 718/497-1200 • E-mail: sfrudy@aol.com

Phosphate Coatings: Spearheading Metal Finishing Progress, Part 2

Last month we acknowledged that mankind's endless fight against corrosion began very long ago. One weapon in this struggle has been the use of phosphate coatings. Some ingenious metal finishers, referred to as the "A.D. 300 gang," introduced the world to phosphate coatings. After languishing as a crude surface treatment for more than 1,350 years, a new generation of chemists and finishers took up the phosphate cause. Their timing, as we noted, awoke a sleeping giant that hasn't blinked since! The phosphate dynamo kept pace with and helped fuel the advancing Industrial Revolution. Its legacy is with us in every facet of our daily lives. Anywhere you look or anyplace you can think of, there is most likely a phosphate coating. Some general "it's there to find" places include: on the earth's surface (cars, tools, road signs, bookshelves, etc.), below the earth's surface (submarines, communication cables), in the sky and beyond our solar system (the Explorer satellites launched almost 30 years ago). Last month's coverage of phosphate coatings included types, basic anatomy (what makes them tick and makes them unique) and application benefits. Since these last ports of call, the good ship *Fezinphos* has plotted a swift journey through heavy seas of information, casting her nets to retrieve schools of useful knowledge for your factory ship to process. Ahoy mates, as we gather a bountiful plenty of facts.

Phosphates

Typical Process Cycles Cycles predominantly follow this progression:

1. Clean (immersion or spray).

Removes oils, grease and shop dirt.

- 2. Rinse
- 3. Phosphate (immersion or spray)
- 4. Rinse
- 5. Seal (optional)

Variables based on parts, handling limitations, economics, throughput and ultimate targeted finish allow for cycle flexibility. Some of these are:

- Soak or spray
- Rack, barrel or basket
- · Combination clean and phosphate in one step

Two popular soak application cycles can be used to iron phosphate parts.

Immersion #1

1. Soak Clean: Typically an alkaline cleaner. It should provide for complete removal of soils and be free rinsing.

2. Rinse

3. Phosphate: Includes a simple wetter

Guaranteed Compliance With TheENFORCERIII Multi-StageMeshPadEliminator

- Reasonable Cost
- Heavy-Duty PVC Construction
- Closed-Loop Operation
- Optional Automatic Operation
- Superiorto Horizontal Designs
- -Performance-Guarantee

or surfactant system for residual light cleaning demands and lower solution surface tension to enhance penetration and reaction with the surface to form the iron phosphate coating.

- 4. Rinse
- 5. Seal: Application of a chromic acid/phosphoric acid or non chromated surface treatment. The effect is to passivate or "seal" those minuscule surfaces between actual iron phosphate deposit sites. Think of it as sealing a driveway, filling the tiny voids between the tamped asphalt-stone mixture.
- 6. Rinse: This is an optional step added on, or in place of, the seal.

Immersion #2

- 1. Clean & Phosphate: One step does both tasks. This is a critical decision, because quality cleaning must be accomplished in a mildly acid solution, along with temperature limitation.
- 2. Rinse

The Piece That Makes

ItComplete ...

ENFORCER

3. Rinse or Seal

III

Iron phosphates are commercially available in the form of powder and

liquid concentrate products. Combo cleaner/phosphates may also provide a detergent additive to boost cleaning. General operating parameters for the two immersion types are shown in Table 1.

Spray Iron Phosphating

There are two likely candidate cycles for spray iron phosphating.

Three-stage Spray

- 1. Clean & Iron Phosphate: Lowfoaming detergent system, coupled with iron phosphating chemistry.
- 2. Rinse 3. Seal or Rinse

Five-stage Spray

- 1. Clean: Low-foaming detergent system incorporated with sequestering agents, alkalies, builders and glycol solvents.
- 2. Rinse
- 3. Phosphate: Surfactant level reduces solution surface tension and provides light back-up cleaning. Surface conditioned for effective iron phosphate formation.
- 4. Rinse
- 5. Rinse or Seal

ChromeMist Eliminator See Us @ SURFIN Booth#619

-MAPCO-

Midwest Air Products Co., Inc. 281 Hughe Drive, Traverse City, Michigan 49686 (800) 97-MAPCO • FAX: (231) 041-1636 www.midwestair.com • e-mail:mapco@qtii.com

> SUR/FIN[®] 2000 ... Booth #619. Free Details: Circle 142 on reader service card orvisitwww.aesf.org/psf-qwiklynx.htm.

			Table 1				
	Ire	on Phos	phate Im	nersion			
Clean, Rinse, Phos, Rinse, Seal,							
Method	mir	1	sec	min	sec	sec	
Immersion #1	3-5	3	0-60	3-6	20-40	45-60	
Immersion #2	0		0	3-6*	30-60	45-60	
	*combo clean/phosph					phosphate	
		Г	Table 2				
	-	- Iron Pho	osphate S	prav			
	Clean,		Clean/	Rinse,	Phos,	Rinse,	
Method	min	sec	Phos, min	1 sec	min	sec	
Three-stage	0	0	1-2	30-60	0	20-40	
Five-stage	1-2	30-60	0	30-60	1-2	20-40	
Optional Sealer: 45-60 sec							
Optimum Ter	mperat	ures—I:	ron Phos	phating	я		
Process		°F		°C	<u> </u>		
Cleaning	1	20 - 165		49 - 7	4		
Clean/Phos	110 - 145			43 - 63			
Rinses	80 - 90			27 - 32			
Seals	80 - 110			27 - 4			
		r	Table 3				
	Zinc Pł		e Immers	sion & S	prav		
	Clean	Rinse	Rinse	Phos	Rinse	Seal	

Table 3								
Zinc Phosphate Immersion & Spray								
	Clean, Rinse, Rinse, Phos, Rinse, Seal,							
Method	min	sec	sec	min	sec	sec		
Spray	2 - 4	20 - 40	20 - 40	3 - 5	15 - 30	20 - 40		
Immersion	3 - 7	30 - 60	30 - 60	8 - 20	20 - 40	20 - 40		

Spray cleaners should contain an effective range of surfactants to remove a wide variety of soils. The levels of these cleaning agents are typically lower compared to immersion soak cleaners. Spray nozzles deliver solution from 15 psi and up, providing mechanical action, facilitating removal of oils and grease. Many types of chlorinated, cutting, lube, paraffins, stamping and rust-proofing oils are encountered. Yes, sometimes people apply silicone oils during the manufacturing process. These must be efficiently removed, preferably by displacement, in a short cycle. Streamlined spray cleaners are fortified with a balance of alkalies, water-hardness conditioners (say no to plugged spray nozzles), grease cutting solvents and derusters (see Table 2).

Zinc phosphates require precleaning to condition the base metal first. This means complete removal of organic soils (oils & grease), scales and rust. A typical process cycle is:

Zinc Phosphate Immersion & Spray

- 1. Clean
- 2. Rinse
- 3. Rinse
- 4. Phosphate

coating types.

SprayApplications					
Steel Types & Coatings					
Steel	Coating	Preference			
Cold-rolled	Lite zinc	Paint bond			
Hot-rolled	Lite zinc	Paint bond			
Steel	Medium zinc	Cold deform			
Galvanized	Medium zinc	Paint bond			

Immersion Applications

THICT PTOIL PPTTCACTOID					
Standard Steel & Coatings					
Coating	Preference				
Heavy zinc	Rustproof				
Heavy manganese	Wear resistance				
Lite/medium zinc	Paint bond				
Lite iron phos	Paint bond				

Sealing and rinsing are very important steps in the process cycle. The effect and benefits of each may sometimes be overlooked or under appreciated. In either bath, it doesn't take much chemical or mechanical input to inject value-added features into the final finish.

Sealers

- Remove unreacted phosphate compound and hard water residues.
- Passivate the minute distances between phosphate coating sites.
- Improve corrosion resistance.

• Chromated and/or non-chromated versions (used dilute, approx. 1-2 pints/100 gal)

Rinsing

5.Rinse

Rinse

6.Seal or

Application

phosphates

may require

reaction time

6-15 min

to develop

coating

weight.

tables

describe

recom-

mended

spray and

immersion

applications

over certain

base metals,

to achieve

optimum

organic

some of the

The following

the required

of heavy zinc

- Very important and critical to success of each process step.
- Poor rinsing reduces adhesion quality of final top coats.
- Removes collective films and phosphate solutions.
- Water quality (deionized) and agitation are important keys to success.

Process Bath Analysis & Control The bath chemistry, dynamics of the process, and concentrations of active components continually change with solution use. Specifically, as pH rises, the ratio of chemical reactants, wetters, accelerators and buffers are consumed in the phosphating reaction. Drag in of dilute alkaline solutions from the cleaner, drag out of the phosphate process solution, and dilution of the bath with volume adjustment water also reduce concentration of the proprietary solution. Maintenance additions are usually made on a scheduled basis, predetermined by monitoring actual concentration, pH and other related actives during bath operation. Or, selected analysis is routinely conducted.

Iron Phosphate

- pH measurement
- Titrate acidity to determine active concentration
- Determine coating weight on test panels (mg/ft²)
- Process standard panels with finished top coat. Measure corrosion by accepted method (*e.g.*, neutral spray of scribed panels)

Zinc Phosphate

- Multiple titration procedures to determine total and free acid concentrations, with corresponding ratios.
- Analysis of accelerator by titration.
- Determine coating weight on test panels (mg/ft²)
- Process standard panels with finished top coat. Measure corrosion by accepted method (*e.g.*, neutral spray of scribed panels)

Analysis of Sealers	provide an	Table 4					
 Analysis by titration based on 	excellent	Standard Test Procedures					
process type chrome concentra-	underlayer for ASTM Description						
tion or free and total acid.				te blistering on parts			
 Process standard panels with 	organic top D-870-54 Water dip, organic coats on steel						
finished top coat. Measure	coats. Our	· · · · · · · · · · · · · · · · ·					
corrosion by accepted method	review did	B-287-62 Acetic acid salt spray fog test					
(e.g., neutral spray of scribed	highlight these	Spec C-46487	Descript	ion	Class	Phosphate	
panels)	benefits related		Clean/prep org coat		Gr I, II	Iron	
-	to zinc phos-	P16232 not to be			M, Z (all)	Zn or mn phos	
Standard Test Procedures	phates:	TT-C-490		ep org coat	Type I,II	Iron & Zn phos	
These tests (see Table 4) represent	Crystalline	Spac design	ations: MII	L, DOD, TT			
some of the more popular and widely	and microc-	Spec design	ations. will				
used methods for evaluating phos-	rystalline						
phate/organic topcoats.		superior anchoring		How little they probably thought they			
Iron and zinc phosphates exhibit		to organic top coats.		knew about it. In retrospect, we see			
process benefits that permit the	benefits that permit the • A wider range			how much they taught us, and			
selection of either one for specific		lustrial applications,		illuminated the path of R&D, which			
applications. By comparison, iron	such as drawing tube and wire,			continually improves phosphating of			
phosphates are easier to run, control	service life (harsh and weather-		metals. The Fezinphos has docked. Its				
and analyze. Lower heating require-		motive, aircraft and		holds offer a rich cache of valued			
ments, reduced chemical consumption	military specifications.			information for the finisher's benefit.			
and less time to process work also				The seas of challenge offer more			
reflect an economic benefit in	For exceptional corrosion protec-		rewards to harvest as we strive to				
associated cost savings. Iron phos-	tion and severe wear applications,		continually improve metal finishing in				
phates are generally not corrosive.	zinc phosphates may be preferred.		the 21st century. As an industry giant,				
This allows the use of less expensive	The A.D. 300 gang would be quite		be quite	Rod Leeds, used to say, "Smooth			
equipment (tanks, process line	proud of their abi	lity to initially		sailing!" P&SF			
ancillary equipment). Iron phosphates	phating proce	ess.					