





Project R-119 Q7

### Electro-codeposition of MCrAIY Coatings for Advanced Gas Turbine Applications

7<sup>th</sup> Quarterly Report July-September 2019 AESF Research Project #R-119

by Prof. Ying Zhang<sup>\*</sup> & J.C. Witman Department of Mechanical Engineering Tennessee Technological University Cookeville, Tennessee, USA

#### Summary

In the third quarter of Year 2, the effect of the particle size of gas-atomized CrAIY powders on electro-codeposited Ni-CrAIY composite coatings was studied. The specimens were plated in a closed rotating barrel, and commercial CrAIY powders with two different particle sizes (*i.e.*, ~5  $\mu$ m and ~10  $\mu$ m) were used. The powder concentration in the plating solution was varied at two levels, 20 g/L and 60 g/L, respectively. When the particle concentration in the solution was increased from 20 to 60 g/L, the particle incorporation (vol%) was increased, especially for the 5- $\mu$ m powder. For both powder concentrations, higher particle incorporation was observed for the 10- $\mu$ m powder (~36 vol%), as compared to the 5- $\mu$ m powder (28-31 vol%). Although the coating deposited using the 10- $\mu$ m powder showed higher particle incorporation, the number of particles per unit area was much lower, only approximately 44% of what was incorporated in the coating deposited with the 5- $\mu$ m powder. In addition, for both powders, the average size of the embedded particles was much smaller (about half) than that of the starting powders. These results suggest that it is more difficult to keep larger particles in suspension in the rotating barrel. The larger particles also require higher metal deposition rate in order to be embedded in the coating.

**Technical report** 

### I. Introduction

To improve high-temperature oxidation and corrosion resistance of critical superalloy components in gas turbine engines, metallic coatings such as diffusion aluminides or MCrAIY overlays (where M = Ni, Co or Ni+Co) have been employed, which form a protective oxide scale during service.<sup>1</sup> The state-of-the-art techniques for depositing MCrAIY coatings include electron beamphysical vapor deposition (EB-PVD) and thermal spray processes.<sup>1</sup> Despite the flexibility they permit, these techniques remain line-of-sight which can be a real drawback for depositing coatings on complex-shaped components. Further, high costs are involved with of the EB-PVD process.<sup>2</sup> Several alternative methods of making MCrAIY coatings have been reported in the literature, among which electro-codeposition appears to be a more promising coating process.

Electrolytic codeposition (also called "composite electroplating") is a process in which fine powders dispersed in an electroplating solution are codeposited with the metal onto the cathode (specimen) to form a multiphase composite coating.<sup>3,4</sup> The process for fabrication of MCrAIY coatings involves two steps. In the first step, pre-alloyed particles containing elements such as chromium, aluminum and yttrium are codeposited with the metal matrix of nickel, cobalt or (Ni,Co) to form a (Ni,Co)-CrAIY composite coating. In the second step, a diffusion heat treatment is applied to convert the composite coating to the desired MCrAIY coating microstructure with multiple phases of  $\beta$ -NiAl,  $\gamma$ -Ni, etc.<sup>5</sup>

\*Corresponding author:

Dr. Ying Zhang, Professor Department of Mechanical Engineering Tennessee Technological University Cookeville, TN 38505-0001 Tel: (931) 372-3265 Fax: (931) 372-6340 Email: yzhang@tntech.edu





Project R-119 Q7

Compared to conventional electroplating, electro-codeposition is a more complicated process because of the particle involvement in metal deposition. It is generally believed that five consecutive steps are engaged:<sup>3,4</sup> (i) formation of charged particles due to ions and surfactants adsorbed on particle surface, (ii) physical transport of particles through a convection layer, (iii) diffusion through a hydrodynamic boundary layer, (iv) migration through an electrical double layer and (v) adsorption at the cathode where the particles are entrapped within the metal deposit. The quality of the electro-codeposited coatings depends upon many interrelated parameters, including the type of electrolyte, current density, pH, concentration of particles in the plating solution (particle loading), particle characteristics (composition, surface charge, shape, size), hydrodynamics inside the electroplating cell, cathode (specimen) position, and post-deposition heat treatment if necessary.<sup>3-6</sup>

There are several factors that can significantly affect the oxidation and corrosion performance of the electrodeposited MCrAIY coatings, including: (i) the volume percentage of the CrAIY powder in the as-deposited composite coating, (ii) the CrAIY particle size/distribution and (iii) the sulfur level introduced into the coating from the electroplating solution. This three-year project aims to optimize the electro-codeposition process for improved oxidation/corrosion performance of the MCrAIY coatings. The three main tasks are as follows:

- Task 1 (Year 1): Effects of current density and particle loading on CrAIY particle incorporation.
- Task 2 (Year 2): Effect of CrAIY particle size on CrAIY particle incorporation.
- Task 3 (Year 3): Effect of electroplating solution on the coating sulfur level.

In the previous reporting period (Sixth Quarterly Report: <u>http://short.pfonline.com/NASF19Oct2</u>), the effect of particle size of ballmilled CrAIY powders on the particle incorporation in the coating was investigated using a closed barrel. In the current reporting period, a similar study was conducted for gas-atomized CrAIY powders.

### II. Experimental procedure

Cylindrical SS304 specimens were ground to #600 grit using SiC grinding papers, followed by grit blasting with #220 Al2O3 grit. The specimens were then ultrasonically cleaned in hot water and acetone. Gas-atomized CrAIY powders (58% Cr, 30% Al and 2% Y, wt%) with two different particle sizes purchased from Sandvik were used in the electro-codeposition experiments.

The specimens were plated in a closed rotating barrel system, as described in US Patent Application 62349778<sup>7</sup> and in the 2019-Q2 Report (<u>http://short.pfonline.com/NASF18Oct1</u>). There are several benefits associated with the closed barrel configuration. First, the particle size that can be incorporated in the composite coating is not limited by the pore size of the nylon membrane, and codeposition of smaller particles (even nanoparticles) is thus possible with this configuration. Second, the amount of plating solution required is significantly reduced, which can be particularly useful for exploration of new solutions. The closed barrel configuration is hence more suitable for the investigation of the particle size effect.

Watts nickel-cobalt plating solution was utilized in electro-codeposition. The particle concentration in the solution was varied at two levels, 20 g/L and 60 g/L, respectively. A relatively low current density (5 mA/cm<sup>2</sup>) was applied in the current electro-codeposition experiments. The specimens were plated at 50°C with a solution pH level of 3.0-4.0. The barrel rotation speed was maintained at 4 RPM.

Particle size analysis of the gas-atomized CrAIY powders was carried out using a Malvern Mastersizer 2000 Laser diffractor. The NiCo-CrAIY composite coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy. Prior to metallographic sample preparation, the specimens were copper-plated to improve edge retention. To determine the volume fraction of the incorporated CrAIY particles, multiple backscattered electron images were taken from different locations along the coating cross-section, which were then processed using the ImageJ software. The brightness and contrast of the image were adjusted by setting a proper threshold such that the particles were separated from the background. The area fraction of the CrAIY particles was determined, which was assumed equivalent to its volume fraction.

### III. Results and discussion

The particle distributions of the two commercial gas-atomized CrAIY powders are presented in Fig. 1 and summarized in Table 1. The D50 values for the smaller and larger particles were 4.7 µm and 9.8 µm, respectively. The two powders are referred to as "5-µm" and "10-Vm" powders hereafter.





Project R-119 Q7

| Gas-atomized CrAlY powder | Particle size (µm) |                        |             |  |
|---------------------------|--------------------|------------------------|-------------|--|
|                           | $\mathbf{D}_{10}$  | <b>D</b> <sub>50</sub> | <b>D</b> 90 |  |
| Smaller particles         | 2.4                | 4.7                    | 8.0         |  |
| Larger particles          | 5.4                | 9.8                    | 15.8        |  |



Figure 1 – Particle size distributions of 5-µm and 10-µm gas-atomized CrAIY powders.

| Table 2 - Summary of CrAIY | particle incorporation in N | iCo-CrAIY coatings. |
|----------------------------|-----------------------------|---------------------|
|                            |                             |                     |

| Particle concentration<br>in solution (g/L) | CrAlY particle incorporation in the NiCo-<br>CrAlY coating (vol.%) |              |  |
|---------------------------------------------|--------------------------------------------------------------------|--------------|--|
|                                             | 5-µm powder                                                        | 10-µm powder |  |
| 20                                          | 27.5                                                               | 35.6         |  |
| 60                                          | 30.5                                                               | 36.5         |  |

Figure 2 shows the SEM cross-sectional images at two different magnifications of the as-deposited NiCo-CrAIY coatings. The coating displayed in Figs. 2(a & c) was plated using the 5- $\mu$ m CrAIY powder and the coating with the 10- $\mu$ m powder is shown in Figs. 2(b & d). The difference in particle size can be clearly seen, particularly at the higher magnification, Figs. 2(c & d). It is worth noting that while all other electro-codeposition parameters remained the same, the plating time was different for the two coating samples, resulting in different coating thicknesses.

Table 2 summarizes the CrAIY particle incorporation in the coatings deposited with 5- and 10- $\mu$ m powders with different particle concentrations in the plating solution. When the CrAIY particle loading was increased from 20 to 60 g/L, the particle incorporation in the NiCo-CrAIY coating was increased, especially for the 5- $\mu$ m powder. Regardless of the particle loading, consistently higher particle incorporation (based on vol%) was obtained for the 10-  $\mu$ m powder, ~36%, as compared to the 5-  $\mu$ m powder (28-31%).

Table 3 provides a more detailed comparison between the volume fraction of particle incorporation and the number of particles in the coatings plated with 60 g/L particle loading. The measurements were taken in eight different areas on each specimen. Although the coating deposited using the 10- $\mu$ m powder showed higher volume fractions of CrAIY particles, the number of particles per unit area was much lower, approximately 44% of what was incorporated in the coating deposited with the 5- $\mu$ m powder. In addition, for both

powders, the average size of the embedded particles was much smaller (about half) than that of the starting powders.

Particle size and density can change the magnitude of forces acting on the particles both while being suspended in the solution and when in contact with the component surface. When a sedimentation or barrel configuration is used, the velocity of the particle is dictated by a balance of gravitational forces and hydrodynamic drag forces. For larger and heavier particles, the agitation required to suspend the particles becomes quite high. In addition, larger particles are more susceptible to hydrodynamic forces further diminishing their ability to be embedded. Both particle size and density have been shown to increase the sediment velocity of the particles.<sup>8,9</sup> The increase of particle velocity can increase the particle transport to the component surface, which in turn increases the particle concentration at the surface. Nevertheless, not only is gravity acting on the particles but electrophoretic, hydrodynamic and electrochemical forces are also exerting on the particles. Additionally,





Project R-119 Q7

adhesion forces are being applied to the particles as the metal matrix forms around the particle. The sum of these forces dictates if a particle will become permanently incorporated in the coating.





(b)



Figure 2 – SEM cross-sectional images of as-deposited NiCo-CrAIY coatings plated using powders with difference particle sizes: (a) and (c) 5-µm particles; (b) and (d) 10-µm particles.

| Region  | Particle incorporation<br>(vol.%) |                 | Number of particles<br>per mm <sup>2</sup> |                 | Average particle size<br>in the coating (μm) |                 |
|---------|-----------------------------------|-----------------|--------------------------------------------|-----------------|----------------------------------------------|-----------------|
|         | 5-µm<br>powder                    | 10-µm<br>powder | 5-µm<br>powder                             | 10-µm<br>powder | 5-µm<br>powder                               | 10-µm<br>powder |
| 1       | 30.1                              | 36.4            | 40456                                      | 18373           | 2.7                                          | 4.5             |
| 2       | 28.4                              | 36.6            | 39238                                      | 15651           | 2.6                                          | 4.5             |
| 3       | 29.6                              | 37.7            | 42594                                      | 21699           | 2.5                                          | 4.1             |
| 4       | 29.2                              | 36.6            | 43788                                      | 17413           | 2.5                                          | 4.8             |
| 5       | 32.5                              | 37.2            | 40263                                      | 16779           | 2.8                                          | 4.7             |
| 6       | 31.1                              | 38.9            | 38953                                      | 19488           | 2.8                                          | 4.8             |
| 7       | 31.3                              | 34.8            | 42961                                      | 17206           | 2.6                                          | 4.5             |
| 8       | 31.4                              | 34.2            | 41581                                      | 17079           | 2.6                                          | 4.1             |
| Average | 30.5±1.5                          | 36.5±1.3        | 41229±1877                                 | 17961±1754      | 2.6±0.3                                      | 4.5±0.1         |

Table 3 - Comparison of the volume fraction and the number of CrAIY particles in the coating for 60 g/L particle loading.

### References

- 1. G.W. Goward, Surf. Coat. Technol., 108-109, 73-79 (1998).
- 2. A. Feuerstein, et al., J. Therm. Spray Technol., 17 (2), 199-213 (2008).
- 3. C.T.J. Low, R.G.A. Wills and F.C. Walsh, Surf. Coat. Technol., 201 (1-2), 371-383 (2006).





Project R-119 Q7

- 4. F.C. Walsh and C. Ponce de Leon, Trans. Inst. Metal Fin., 92 (2), 83-98 (2014).
- 5. Y. Zhang, *JOM*, **67** (11), 2599-2607 (2015).
- 6. B.L. Bates, J.C. Witman and Y. Zhang, *Mater. Manuf. Process*, 31 (9), 1232-1237 (2016).
- 7. J.C. Witman, Y. Zhang, and B.L. Bates, "Apparatus Used for Producing Coatings," Patent Application #62349778 (2016).
- 8. J. Foster, B.P. Cameron and J.A. Carew, Trans. Inst. Metal Finish., 63 (1), 115-119 (1985).
- 9. L. Stappers and J. Fransaer, J. Electrochem. Soc., 153 (7), C472-C482 (2006).

#### About the authors



Dr. Ying Zhang is Professor of Mechanical Engineering at Tennessee Technological University, in Cookeville, Tennessee. She holds a B.S. in Physical Metallurgy from Yanshan University (China)(1990), an M.S. in Materials Science and Engineering from Shanghai University (China)(1993) and a Ph.D. in Materials Science and Engineering from the University of Tennessee (Knoxville)(1998). Her research interests are related to high-temperature protective coatings for gas turbine engine applications; materials synthesis via chemical vapor deposition, pack cementation and electrodeposition, and high-temperature oxidation and corrosion. She is the author of numerous papers in materials science and has mentored several Graduate and Post-Graduate scholars.



Dr. Jason C. Whitman is a Materials Lab Engineer at National Aerospace Solutions, LLC at Arnold AFB, Tennessee. His primary work with AESF Foundation Research Project R-119, was as a Graduate Research Assistant at Tennessee Technological University in Cookeville, Tennessee, from which he earned a B.S. degree in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering in (2018).